

digital media services

School of Computing Science

Mapping an Anycast CDN Using RIPE Atlas

Stephen McQuistin, University of Glasgow Marcel Flores, Verizon Digital Media Services

INTRODUCTION

Anycast CDNs announce the same IP address blocks from different points-of-presence (PoPs), relying upon BGP routing to map clients to these PoPs. This defines *catchments*[2]: the set of clients served by a given PoP. In this poster, we outline a methodology for mapping anycast catchments, and evaluating changes in anycast announcements at a large CDN. Understanding and optimising these catchments is important, given their impact client performance and PoP load.

CATCHMENTS

DATA SOURCES

- Traceroute data from RIPE Atlas probes[1].
- Probe-PoP mappings: Use traceroutes and BGP session information from each PoP.
- Test IP blocks: a control block (consistent with current announcements), and an experimental block (with proposed configuration).

SCORING

METHODOLOGY

Perform traceroute from each probe to control and test blocks

- 2 Group probes together, based on AS number and geolocation
- 3 Score the change within each group, based on CDN client popularity of ASN.

4 Rank groups: positive scores indicate that performance has improved; negative scores show that it has degraded

CASE STUDY

peformers The with worst a best and configuration. tested Larger, immore networks weighted higher. portant are Score Group # Probes rtt_{exp} rtt_{ctl} 50.37 13.2783 .039 Α B 13 16.92.026 55.62

С	12	19.70	20.77	002
D	4	13.32	15.01	003
Several large networks saw improvements, re-				
flected in higher scores and richer catchments.				

REFERENCES

- [1] RIPE Atlas RIPE Network Coordination Centre, 2017. https://atlas.ripe.net/.
- [2] W. B. de Vries, R. d. O. Schmidt, W. Hardaker, J. Heidemann, P.-T. de Boer, and A. Pras. Verfploeter: Broad and load-aware anycast mapping. Technical Report ISI-TR-719, USC/Information Sciences Institute, 2017.
- [3] T. Holterbach, E. Aben, C. Pelsser, R. Bush, and L. Vanbever. Measurement Vantage Point Selection Using A Similarity Metric. In *Proceedings* of the 2017 Applied Networking Research Workshop. ACM, 2017.