
The Web We Weave: Untangling the Social Graph of the IETF
Prashant Khare,1 Mladen Karan,1 Stephen McQuistin,2 Colin Perkins,2
Gareth Tyson,1,3 Matthew Purver,1,4 Patrick Healey,1 Ignacio Castro1

1 Queen Mary University of London
2 University of Glasgow

3 Hong Kong University of Science & Technology
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Abstract

The Internet Engineering Task Force (IETF) has developed
many of the technical standards that underpin the Internet.
The standards development process followed by the IETF is
open and consensus-driven, but is inherently both a social and
political activity, and latent influential structures might ex-
ist within the community. Exploring and understanding these
structures is essential to ensuring the IETF’s resilience and
openness. We use network analysis to explore the social graph
of IETF participants, based on public email discussions and
co-author relationships, and the influence of key contributors.
We show that a small core of participants dominates: the top
10% contribute almost half (43.75%) of the emails and come
from a relatively small group of organisations. On the other
hand, we also find that influence has become relatively more
decentralised with time. IETF participants also propose and
work on drafts that are either adopted by a working group for
further refinement or get rejected at an early stage. Using the
social graph features combined with email text features, we
perform regression analysis to understand the effect of user
influence on the success of new work being adopted by the
IETF. Our findings shed useful insights into the behavior of
participants across time, correlation between influence and
success in draft adoption, and the significance of affiliated
organisations in the authorship of drafts.

1 Introduction
The global success of the Internet owes much to its open
development process, a focus on permissionless innovation,
and the ready interoperability enabled by its underpinning
technical protocol standards. These standards support inter-
working between a diverse range of systems implemented
by different vendors, and encourage the development of a
vibrant, open, ecosystem. Given how crucial the Internet has
become, it is, however, vital to understand who develops and
maintains these standards, as they, and the companies they
are affiliated with, have the power to fundamentally shape
the Internet.

The technical standards that define the Internet are largely
developed and maintained by the Internet Engineering Task
Force (IETF). The IETF develops and maintains Internet
protocols, including those for internetworking and transport
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(TCP/IP and QUIC), routing (BGP, MPLS), security (TLS),
and application protocols such as HTTP and WebRTC. The
IETF follows an open, consensus-driven process and does
not have a formal membership, thereby posing few barriers
to entry. The standards it develops are publicly available at
no cost and, more importantly for our purposes, the IETF
also makes available its email archives, working documents,
meeting minutes, etc., providing transparent access to rich
datasets that document decades of activities. This allows us
to study the process by which the Internet protocols where
developed in unprecedented detail. The IETF data provides a
representative use case of large-scale, long-lived, distributed
online collaboration, and since the dataset long pre-dates the
COVID-19 pandemic by several decades, lets us to generate
longitudinal insights and patterns pertaining to our research
questions.

Protocol standardisation is an inherently social process.
Most day-to-day work happens on public mailing lists, aided
by meetings, video conference calls, and open document and
code repositories. We are specifically interested in better un-
derstanding how influence is distributed across stakeholders
and how it might affect the standardisation process. This is
of critical societal importance: the IETF has a major impact
on global Internet technologies, and understanding the social
processes involved would give us insight into not only the
driving forces behind standardisation, but also its resilience
to the loss of major participants. Thus, we ask the following
research questions:

(i) How centralised is the active IETF community, and to
what extent is it reliant on a small core of participants?

(ii) How do the most influential participants behave?
(iii) How does influence (determined by mailing list partic-

ipation) relate to wider impacts throughout the IETF?
(iv) Does the organisational affiliation of participants also

influence the innovation (adoption of new work) within
IETF?

To answer these questions, we collect public mailing list
archives (2000–2019) containing more than 2.1M messages
from almost 45K senders. We then generate a social inter-
action graph from these public mailing lists (§2). We find
that, akin to many prior social graph studies (Kourtellis et al.
2013; Weitzel, Quaresma, and de Oliveira 2012), influence



resides primarily with a small cohort of influential partici-
pants (§3.1). In fact, removing just 5% of IETF participants
disintegrates the social graph, reducing the Largest Con-
nected Component (LCC) by around 41%. We show that
members of this group contribute a disproportionate fraction
of the email communications, participate in a wider range of
IETF areas, remain active in the community for longer, and
discuss a broader range of topics (§3.2).

We then demonstrate that this mailing list influence also
translates into draft authorship and leadership roles in the
IETF, finding significant overlaps in these different commu-
nities (§3.3). Overall, up to 42% of the working drafts in the
IETF come from the top 10% of mailing list participants.
We examine participants’ affiliations to determine which or-
ganisations have influence in the IETF, finding that a large
fraction of influential participants are affiliated with a small
number of prominent organisations.

Finally, we conjecture that the success of new work pro-
posals may be predictable, based on prior social interactions
by their authors. To test this, we build models to quantify
the most determinant features (§4). We discover that, indeed,
the social graph does play a significant role in predicting the
adoption of work by the IETF.

To the best of our knowledge, this is the first study to
characterise the social graph of the IETF standards devel-
opment community. Our key findings include: (i) influence
evident in the mailing list social graph is also reflected in
document authorship and in IETF leadership roles, i.e., in
defining the technical standards themselves; (ii) participants
are affiliated with a relatively small set of organisations, but
show an increasingly willingness to collaborate with authors
from other organisations: 772 (2000-2004) vs. 3083 (2015-
2019) jointly authored documents; and (iii) the social graphs
of participants demonstrate influence, and, combined with
email text features, they are a predictor of the success of
their documents, allowing us to build a model that predicts
if new work proposals will be adopted by the IETF.

2 Background & Datasets
Standardisation — The technical standards that define the
Internet are primarily developed and maintained by the
IETF. The IETF was established in 1986 to coordinate the
development of Internet technologies, as a follow-on to the
early research projects that developed the ARPAnet and
other Internet precursor networks. Through the evolution of
the Internet (Böttger et al. 2018), the IETF has been instru-
mental in developing many core protocols, such as TCP/IP,
HTTP, or more recent ones such as QUIC and DoH (Böttger
et al. 2019). The IETF has also worked with the W3C to
jointly develop many recent critical web standards, includ-
ing WebRTC (Jennings, Hardie, and Westerlund 2013) and
WebSockets. For instance, many of the video conferencing
applications, which have been so vital in supporting remote
work during the COVID-19 pandemic, are built on WebRTC
(Arkko et al. 2020).

The IETF is an open standards development organisation
with no formal membership, and rather comprises a large,
and long-lived, volunteer community. This openness, and

the resulting social graph, exposes dynamics of the standards
development process, and makes it interesting to study.
Lifecycle of IETF standards — The IETF develops tech-
nical standards, published in the RFC series of documents,1
via a collaborative work process that reflects the inherent so-
cial and political nature of standardisation. This is managed
through public mailing lists, supported by regular plenary
and working group (WG) meetings. RFCs begin as Internet-
Drafts submitted to the IETF for community discussion. Be-
fore an Internet-Draft can be published as a standards-track
RFC, it must first be adopted by a WG that will conduct a
technical review of the material. Drafts are authored by indi-
vidual participants, and that model of explicit authorship is
maintained even after WG adoption. Around 20% of drafts
are adopted by a WG, and around 75% of these WG-adopted
drafts are published as an RFC. Both of these stages, prior
to and after WG adoption, involve multiple rounds of review
and revision.
Datasets — We use of three data sources: the IETF Data-
tracker, the corpus of Internet-Drafts, and the public IETF
mail archives. The Datatracker is an administrative database
used to manage the IETF’s work. It contains metadata about
Internet-Draft submissions and their authors. This, when
combined with the Internet-Draft corpus, gives us data about
32,872 drafts and 8216 authors, spanning from 2000-2019.
Note, this period excludes the COVID-19 pandemic and re-
moves the impact of this highly disruptive event. Studying
this constitutes future work.

The IETF provides a rich email archive, including lists
discussing WG activities, meetings, and administration. We
gather 2,106,804 emails from 56,733 email addresses. To
match email senders to IETF participants listed in the Data-
tracker, we apply the entity resolution approach of Mc-
Quistin et al. (2021), finding 44,741 unique participants.
Ethical considerations — Participation in the IETF is
bound by agreements and policies explicitly stating that
mailing list discussions and Datatracker metadata will be
made publicly available.2 We use only this publicly avail-
able data in our analysis. We have discussed our work with
the IETF leadership to confirm that it fits their acceptable use
policies. We have also made provisions to manage the data
securely, and retain it only as necessary for our work. Our
work is reproducible.3 We open source our tooling, which
accesses the public datasets.

3 The IETF as a Social Graph
Much of the interaction between IETF participants occurs on
public mailing lists. For each year, we build a social graph
based on the active community of participants (nodes) who
have interactions (edges) with any other participant in the
previous 5 years. McQuistin et al. (2021) demonstrated that

1RFC used to stand for Request For Comments, but the RFC
series of documents has evolved over the past fifty years to become
the publication venue for Internet standards (Flanagan 2019).

2See both https://www.ietf.org/about/note-well/ and the IETF
privacy policy available at https://www.ietf.org/privacy-statement/.

3GitHub repository for codebase- https://github.com/
sodestream/icwsm22
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Figure 1: Cumulative degree distribution of the email graph
for different year-periods.
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Figure 2: Size of Largest Connected Component (LCC) and
Number of Connected Components (NCC)

there are three categories of participants in IETF - (a) young
contributors – who leave within one year of their first year
mailing list contribution; (b) mid-age contributors – partici-
pants who stay active for up-to 5 years; and (c) senior con-
tributors – who remain active for more than 5 years. Follow-
ing this, a 5 year period window is chosen to observe inter-
actions. There are no direct participant-to-participant email
exchanges in our dataset: the emails and responses we cap-
ture are sent to the public mailing lists, and we observe an
interaction between two participants when one replies to an
email sent by another on any mailing list. This yields a so-
cial graph based on 1,049,793 emails (out of 2.1M) from
22,138 unique participants across 840 mailing lists. Through
the lens of these discussions, we next explore the dynamics
of the standardisation process and how stakeholders influ-
ence it.

3.1 Measuring Influence
Participation — To examine the variation in participation
between IETF participants, in Figure 1 we plot the cumu-
lative degree distribution of the social graph – i.e., the cu-
mulative number of people a participant interacts with. We
observe a core group that always interacts with substantially
more people than the rest of the community, with around
80% of the participants having degree <15, but 5%-10%
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Figure 3: Impact of removing participants by their influence
on the size of the LCC.

having degree >40. However, this difference decreases over
time: in 2005-2009 around 6% of participants had degree
>40, but by the period 2015-2019 this increases to ∼ 10%.
This shows that while there is always a core of more active
participants, the degree of participation has spread out over
time.

To understand the structure of the community, and its re-
liance on specific groups, we analyse the connected com-
ponents of this graph. Each connected component reflects a
maximal set of nodes such that each pair of nodes is con-
nected by a path. We compute the size of the Largest Con-
nected Component (LCC) and the Number of Connected
Components (NCC) for each year in Figure 2. The NCC
peaks in 2003 before declining, and broadly aligns with the
variation in the number of meeting attendees,4 suggesting a
lag between participating for the first time and integrating
into the wider community. In contrast, the size of the LCC
increases until 2006 before stabilising. Overall, we observe
that the IETF community has become less fragmented.
Influence — Relying on a small group to interconnect the
community could undermine the resilience of the IETF.
To study the influence of participants and their role in in-
terconnecting the wider community, we compute the be-
tweenness centrality of each participant in a given time
period (Kourtellis et al. 2013; Weitzel, Quaresma, and
de Oliveira 2012; Solé-Ribalta et al. 2014). We also con-
sidered other graph based influence metrics such as eigen-
vector centrality: eigenvector centrality reflects the impor-
tance of a node as per its neighbours, while betweenness
centrality is based on shortest paths which is independent
of the influence of neighbours. However, we found a very
strong correlation between the two measures, in line with
similar experiments (Valente et al. 2008; He, Meghanathan
et al. 2016): the Spearman’s rank correlation of participants
ranked by betweenness centrality and eigenvector central-
ity ranged between 0.51-0.72, with a strong statistical sig-
nificance (p < 0.01) for the period 2000-2019. We there-
fore use just betweenness centrality in our analysis; this is
often studied and acknowledged as a measure of influence
in social and complex networks, particularly built on on-

4https://datatracker.ietf.org/stats/meeting/overview/
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Figure 4: Proportion of emails sent (%) by participants
in each period (with 95% confidence interval) according
to their betweenness-centrality percentile (x-axis). Y2-axis
(purple) shows yearly count of emails.

line communication (Hagen et al. 2018; Chen et al. 2012;
Ghalmane et al. 2019). Figure 3 then shows the effect of re-
moving the most influential participants (in 1% increments
from most to least, moving left-to-right on the x-axis) on the
size of the LCC. Worryingly, we find that removal of just
20-25% of the most influential participants causes the LCC
to shrink by 90%. However, we also find that this impact
has decreased over time: for instance, in 2000-2004, remov-
ing the top ∼5% influential participants, reduces the size of
LCC by more than half, whereas in 2015-2019, it takes the
removal of the top∼15% of participants to have the same ef-
fect. This shows that the community has become more cohe-
sive and resilient over time, and the IETF can now sustain a
larger amount of churn while maintaining a well-connected
social graph.

3.2 Behaviour of Influential Participants
We now characterise the behaviour of the most influential
participants, in terms of the volume of emails sent, length of
time active within the community, and topics discussed.
Email volume — Figure 4 shows that each participant in
the top 10% most influential participants sends on average
around 0.05%-0.08% of total emails in a given period. Col-
lectively, the top 10% most influential participants account
for 43.75%, on average, of the total emails, a substantially
larger proportion than the others. This dynamic seems sta-
ble over time, making differences even more acute. At the
same time, the overall number of emails sent increases up to
2010 and remains roughly stable from then onward. Along
with the results from §3.1, this shows a worrying, if slowly
improving, dependence of the IETF on a small number of
influential participants.
Cross-area review — In addition to sending more emails,
we test if influential participants engage with different parts
of the community more. The work of the IETF is divided
into several areas (e.g., Applications & Real-time, Security,
and Routing). This eases administration, but might also act
as a barrier to broader discussion and review. For example,
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Figure 5: Mean number of areas participated in (with
95% confidence interval) according to their betweenness-
centrality percentile in the x-axis, ranked from top (0-10)
to bottom percentile (91-100).
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Figure 6: Mean participation duration (with 95% confi-
dence interval) according to their betweenness-centrality
percentile in the x-axis, ranked from top (0-10) to bottom
percentile (91-100).

WebRTC standards developed in the Applications and Real-
time area might contain elements that could benefit from ex-
pertise from the Security area, but participants in one area
might not review work in another.

Figure 5 shows the mean number of areas where IETF
participants are active (derived from the mailing lists they
use). We see that influential participants engage in more ar-
eas of the IETF, on average, and that cross-area engagement
has improved over time, indicating that the community itself
has matured. This indicates that influential participants ben-
efit the IETF in enabling cross-area discussion and review,
and can bridge administrative divisions.
Participation duration — We next consider for how long
participants remain associated with the IETF (measured as
the delta between first and last emails sent). Figure 6 shows
the mean participation duration distribution for participants,
ranked by influence. Participation duration increases over
time, with the most influential participants typically being
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Figure 7: Yearly overlap (%) of top 10% influencers.

those who have been active for longer. While this might be
expected, it might be a good sign for the IETF community in
that it implies that the most influential participants are also
the most experienced.

We extend this observation by considering what happens
to participants once they become influential. Figure 7 shows
what proportion of the top 10% influential participants in
any given year (y-axis) was also among the top 10% influ-
ential participants in any other year (x-axis). This shows that
a significant majority of participants that become influen-
tial, continue to be influential for a number of years: the top
10% are influential for at least 6-7 years on average. Further,
Figure 8 shows that breaking into the top 10% of influencers
requires an increasing number of years of participation. This
may be beneficial, showing that the IETF is maturing and is
capable of retaining influential and experienced participants,
but it may also point to an increasingly ossified structure that
is not welcoming to newcomers.
Topics of Discussion — The topics discussed on WG mail-
ing lists are a good indicator of the focus of technical work,
and it might be expected that influential participants will
set the direction of that work. To explore this, we use the
Latent Dirichlet Allocation (LDA) (Blei, Ng, and Jordan
2003; Hoffman, Bach, and Blei 2010) model from gensim
(Řehůřek and Sojka 2010) to induce 100 topics on the entire
set of email texts. Each topic is a distribution over words:
e.g., a security topic might have high probability for cypher,
rsa, auth, and related words. We can also use the model to
obtain a vector for any input text as a sparse distribution over
all topics, e.g., finding that a text is comprised of 30% secu-
rity and 70% video streaming topics. With this, we generate
a vector for each participant in a given time period by con-
catenating all messages sent by that participant in the period
and feeding it into the LDA model. The result can be loosely
interpreted as a distribution of topics on which each partici-
pant works.

Manual inspection of the induced topics reveals some in-
teresting trends. We find that topics related to routing and
email protocols are seeing a steady decline in popularity,
while topics like streaming and cryptography are becom-
ing more prominent. This reflects wider trends in standard-
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Figure 9: Mean topic entropy (with 95% confidence interval)
according to their betweenness-centrality percentile in the x-
axis, ranked from top (0-10) to bottom percentile (91-100).

isation, as these efforts have adjusted to the public’s in-
creased awareness of privacy, especially in light of the Ed-
ward Snowden leaks (Farrell and Tschofenig 2014). We also
find that as videoconferencing became increasingly popular,
so did the WebRTC protocol that frequently underpins them.

We next measure the topical diversity of a participant by
observing the entropy of their topic vector, their topic en-
tropy, defined as follows:

η = −
|T |∑
i=1

pi log pi (1)

where T = [p1, ..., pN ] is a topic vector, which defines a
probability distribution over N topics, each pi is a proba-
bility of the i-th topic and

∑
i pi = 1. Figure 9 shows topic

entropy distributions of participants in different time periods
and influence percentiles. While we initially experimented
with measuring diversity by simply counting the number
of topics that account for the majority (≥ 95%) of a par-
ticipant’s topic distribution probability mass, we found that
most participants engage in a relatively small number of top-
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Figure 10: Average drafts authored (with 95% confidence in-
terval) according to their betweenness-centrality percentile
in the x-axis, ranked from top (0-10) to bottom percentile
(91-100). Right-y axis (purple) shows yearly drafts per year.

ics, regardless of influence. However, after measuring diver-
sity using entropy, we identify that the activity of the more
influential participants tends to be more evenly spread across
the topics they participate in5. This difference becomes more
pronounced over time, implying that increased topic entropy
(i.e., more evenly participating in different topics) is an in-
creasingly salient property of influencers. This is aligned
with our earlier findings on cross-area review, showing the
growing number of areas in which influencers participate.

3.3 Impact of Influential Participants
While these top participants are influential within the mail-
ing lists, it is unclear how this influence translates into docu-
ment authorship and into gaining leadership roles within the
organisation.
Draft authorship — The output of the IETF is technical
standards and other documents published in the RFC series.
As described in §2, RFCs are developed by WGs from a se-
quence of Internet-Drafts, with individuals acting as named
authors. Having identified the most influential participants
in the mailing list community, we can determine whether or
not these same participants are also the most active authors.

Figure 10 shows the distribution of the proportion of doc-
uments authored by mailing list participants, sorted by their
influence rank. We observe a growing proportion of the com-
munity involved in draft authoring, skewed towards influen-
tial participants who tend to write more drafts. During 2010-
2019, each participant in the top 10 percentile, authored
0.125% to 0.175% of the total number of drafts in that pe-
riod. We find that 32%-42% of the total drafts, in different
years during this period, were authored by the top 10% most
influential mailing list participants.
Co-authorship and email graph correlation — Figure 10
shows that influential mailing list participants tend to au-
thor more drafts than others. We next ask if they are also

5An example with 3 topics: a distribution of [0.8, 0.1, 0.1] is
less evenly spread than [0.3, 0.4, 0.3].

Top 20% draft authors & all email participants

Years Sub-Network Size Overlap Spearman’s rs
Co-author Email rs p-value

2000-04 398 1390 48.24% .323 4.75e-06
2005-09 427 1662 67.21% .332 7.39e-09
2010-14 728 1639 63.05% .299 5.73e-11
2015-19 915 1370 55.85% .337 4.13e-15

Table 1: Overlap in the co-author and email graph.
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Figure 11: Percentage of Top 20% authors that are not 20%
influencers according to their betweenness-centrality (email
graph) percentile in the x-axis, ranked from top (0-10) to
bottom percentile (91-100).

influencers in the draft co-authorship graph. Thus, we cre-
ate a draft co-authorship graph where each author is a node,
and draft co-authorship is an edge. We then measure in-
fluence with betweenness centrality of the authors in each
time period. Table 1 compares the top 20% of influencers of
the mailing lists with those of the co-authorship graph. We
find a significant overlap between both groups, ranging from
48.2% to 67.2%. There is a significant (p < 0.05) positive
correlation between the rankings of the overlapping mem-
bers of each community: participants that are influential in
the mailing lists are also likely to be influential in draft au-
thorship.

We also look at the top 20% participants from the co-
authorship network who are not part of the top 20% influ-
encers in the email network in Figure 11. We observe that
not all the prolific authors are that engaged in the email dis-
cussion: 40%-50% of non-overlapping authors are ranked
between 20th to 40th percentile of influence in the email
network. These non-overlapping authors are typically more
junior with respect to their participation duration.
Leadership roles — WG chairs are selected from the com-
munity, and we might expect those selected to be influential
in the community. Figure 12 shows that this is indeed the
case: 87.5% of WG chairs are in the top 20% of mailing list
influencers and 67.4% are in the top 20% of document au-
thors in the year before they became chairs. This also shows
the impact of taking up a leadership role: influence in both
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Figure 13: Authors in the most common affiliations of top
20% authors (co-authorship graph) in 2015-2019.

the mailing list and authorship communities grows in the
year after participants become a WG chair for the first time.
Organisations — While participants in the IETF contribute
as individuals, they are usually affiliated with an organisa-
tion.To study the potential influence of organisations, for
each draft we obtain the authors’ affiliations from the Data-
tracker. If this is not available, we use the domain name
of the authors’ email addresses, which we map to the rel-
evant organisation (e.g., @cisco.com maps to Cisco). For
generic email addresses, such as @gmail.com, we use the
participant name if no affiliation is available.

Figure 13 shows the ten most frequent affiliated organisa-
tions of the top 20% authors in the period 2015-2019, and
the number of authors affiliated with these organisations in
each period. While the dominance of Cisco is clear, other
organisations, such as Huawei, have gained a larger pres-
ence over time. In general, a small number of organisations
employ a significant fraction of the influential participants
in the standards process. If we look at the period 2015-
2019, for example, out of the 915 authors ranked in the top
20% of most influential authors, 342 belong to the ten most
frequently affiliated organisations, and nearly 253 are from
Cisco, Huawei, Ericsson, or Juniper alone.
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Figure 14: Number of drafts co-authored by top 15 most
frequently affiliated organisations. We only include the top
20% authors (co-authorship graph) of 2015-2019.

While authors from the same organisation often co-author
drafts together, collaborations between authors from differ-
ent organisations are also common. Figure 14 shows the
most common collaborations between authors from the top
15 most frequently affiliated organisations. Collaborations
between authors at competing organisations, such as be-
tween authors from Cisco, Huawei, Ericsson, and Juniper,
occur frequently. We also computed that over the years,
joint collaboration (authors from multiple affiliations) has
increased: 772 co-authored drafts in the period 2000-2004
vs. 3083 co-authored drafts in the period 2015-2019.

Further inspection of the collaboration trends reveals that
the volume of collaborations between authors from Huawei
and other organisations appears to be unaffected by the re-
cent addition of Huawei to the U.S. Entity List (of Industry
and Security 2019) as the trends in Figure 14 also hold for
2020-2021.6

4 Predicting Author Success
We have identified that influential authors write more drafts
(§3), but are these drafts more successful? Before a stan-
dards track RFC is published, the corresponding draft must
be adopted by a WG for review and development.7 Many
documents, though, fail to be adopted or published. We em-
ploy logistic regression to analyse predictability of this out-
come. Using the Datatracker we compile a dataset for the
adoption of a draft by a WG, comprising 11632 drafts. The
positive and negative labels correspond to adopted and not
adopted, respectively.

4.1 Methodology
Features — We compute a set of features that may impact
adoption or publication for each draft, most of them mo-
tivated by the characteristics of influential participants, in-
cluding the following feature groups: (1) Text, we derive a

6
https://mailarchive.ietf.org/arch/msg/ietf-announce/0ywjgSS4LlO0DaWDoLJLRHxJdUk/

7There are occasional exceptions, known as Area Director
sponsored drafts, but these too rare (∼3%) to affect our analysis.



term frequency – inverse document frequency (Salton and
McGill 1983) weighted bag of words vector representation
of all email text of messages that either explicitly mention a
draft or are part of a thread where the subject line explicitly
mentions a draft; (2) Communication patterns (i.e., volumes
of incoming/outgoing communication between draft authors
and IETF participants of varying experience levels), follow-
ing the scheme proposed by McQuistin et al. (2021); (3) Be-
tweenness centrality for authors; (4) Number of emails sent
by authors; (5) Number of drafts submitted by authors; (6)
Length of participation duration of authors; (7) Number of
authors; (8) Number of areas in which the author is active;
(9) Proportion of top authors in the top 10 and top 20 per-
cent of influential participants; (10) Topic entropy (η) scores
for authors; (11) Author affiliations for each of the 20 most
influential organizations (20 boolean features); (12) Number
of mailing lists that each author participates in, (13) Number
of years active.

For numerical features that relate to each author individ-
ually instead of the draft as a whole (e.g., Number of emails
sent, Centrality, or Number of years active is defined for
each author separately) in three variants: (i) for the least in-
fluential author, (ii) for the most influential author, and (iii)
as the average value across all authors of the draft. We com-
pute individual author features using information from the 5
year period prior to draft submission.

Regarding the text based features, we found that the mod-
els tend to assign high weights to words such as surnames
of active contributors, prolific WG names, and common
technical terms. While this does make the models perform
slightly better, such terms should not be relevant for solving
the task as they do not model the relevant part of the con-
versation. To explore how models would behave in a sce-
nario wherein such words were not available, we construct
a domain-specific stop word list, consisting of: (i) all last
names from the Datatracker, (ii) all WG names from the
Datatracker, and (iii) technological jargon terms obtained
from the web8. We remove from this list any terms appear-
ing in top 5K English terms (e.g., sometimes people’s names
can have identical surface forms as some of the terms rele-
vant to organisational activities). We will refer to this variant
as Text (S).
Experimental setup — To gain empirical insights into
which features provide better prediction results, models are
run using a feature group alone variant and a variant com-
bining each feature group with the Text features. This ap-
proach was motivated by the finding that Text, even though
conceptually quite different from the rest of the feature set
and not our main focus, does provide surprisingly strong re-
sults on its own. Thus, we wanted to empirically investigate
in more detail how well it complements the rest of the graph-
based features. Moreover, we compare all models to a base-
line which simply assigns all examples to the majority class.

We split the data into training (70%), development (10%),
and test (20%) subsets. As a scoring function, we use the
F1 score macro averaged across the positive and negative

8https://www.computerhope.com/jargon.htm, we used a union
of the Internet terms, Network terms, and Security terms categories.

classes (but we also report area under the curve (AUC), pre-
cision, and recall). We train the models on the training set,
optimise hyper-parameters on the development set, and re-
port final scores on the test set. The final scores are those
obtained by the model variant that fared best on the de-
velopment set. We use logistic regression implemented in
scikit-learn (Pedregosa et al. 2011), given that it is
widely used and well interpretable. While we do not per-
form explicit feature selection, we do have implicit feature
selection through L1 regularisaton. We consider the regular-
isation strength a hyper-parameter and consider values from
[2−7, 2−6, ..., 26] on the development set. As our data set is
quite imbalanced (in a roughly 4:1 ratio, 17% is adopted),
we use different class weights during optimization to coun-
teract this. We employ a non-parametric random shuffling
test (Yeh 2000) to check statistical significance of score dif-
ferences against the baseline. Table 2 summarises prediction
results, which will be discussed in the next section.

Next, we wanted to confirm these results at the level of
individual features. To this end, we inspect the statistically
significant coefficients learned by the model corresponding
to each individual feature. For this experiment, we use a
slightly different setup. We do not consider the Text fea-
tures9. We begin by first applying the Variance Inflation Fac-
tor (VIF) to exclude all features with VIF > 5. This, to an
extent, mitigates the collinearity that we know exists as some
features are by construction highly correlated. We then stan-
dardise each remaining feature and then fit a Logistic Re-
gression model from the statsmodels package (Seabold
and Perktold 2010) on the entire data set. Table 3 presents
the results of this experiment.

4.2 Results
Predicting adoption — Scores from Table 2 reveal sev-
eral interesting trends. Most importantly, the best perform-
ing feature groups are Centrality and Proportion in top per-
centiles. They consistently stand out (AUC 0.655 and AUC
0.663, respectively) among all feature groups in terms of
performance. This observation holds in terms of both AUC
and F1 scores regardless of whether or not the text features
are included. This suggests that features related to partici-
pants’ influence in the network affect prediction. Some other
well performing features are Email count, and N. mailing
lists, thereby highlighting the importance of the extent of
participants’ engagement within the community. This en-
gagement is also related to influence, as we have shown that
influential participants are more engaged (§3.2). Statistical
analysis of features better reflect these empirical implica-
tions.

Combining the the text features with most individual fea-
ture groups yields performance gains in both AUC and F1.
This persists when combining the text with the combination
of all other feature groups. Finally, the (S) variants of text
features, that use the domain-specific stopword list, provide
slightly worse standalone performance and benefits when

9There are thousands of text features (terms), making it pro-
hibitively complex to include them. Moreover, they are not central
to our research questions about the IETF community.



¬TXT TXT

AUC F1 P R AUC F1 P R

Baseline .500 .445 .401 .500 .500 .445 .401 .500

Comm. patterns .644 .583 .566 .601 .723 .626 .609 .644
Centrality .655 .577 .573 .581 .717 .639 .625 .653
Email count .632 .566 .555 .577 .718 .650 .639 .662
N. years active .608 .569 .555 .584 .702 .610 .594 .626
Number of authors .578 .536 .529 .544 .697 .631 .621 .641
Proportion in top .663 .594 .580 .609 .728 .634 .614 .655
Draft count .500 .445 .401 .500 .696 .630 .624 .636
N. Areas .634 .572 .557 .588 .721 .639 .622 .657
N. Mailing lists .634 .570 .557 .584 .718 .641 .630 .653
Affiliations .605 .584 .576 .592 .708 .626 .609 .643
Topic entropy (η) .622 .563 .550 .577 .715 .642 .628 .657
Text - - - - .681 .624 .622 .627
Text (S) - - - - .667 .598 .593 .614

All feats .692 .624 .600 .651 .744 .645 .625 .666
All feats (S) .692 .624 .600 .651 .726 .636 .627 .664

Table 2: Results for predicting adoption. Each row presents the scores of a model using the corresponding feature group either
alone (¬TXT ) or combined with the Text features (TXT ). All feats denotes all features except the text. Rows labeled with (S)
use the Text (S) variant of the text features.

Feature Weight P-value

Centrality of most influential 0.1691 0.000
Centrality of least influential -0.0698 0.048
Proportion of authors in top 10 0.1520 0.000

Has a Cisco author 0.1301 0.000
Has an AT&T author 0.1003 0.000
Has a Juniper author 0.0738 0.000
Has a China Mobile author -0.0697 0.000
Has an Alcatel-Lucent author 0.0474 0.022

Topic entropy max 0.1728 0.000
Topic entropy min -0.1135 0.002

Table 3: Weights of the model that are statistically signifi-
cant at p ≤ 0.05 grouped by similarity of features – Author
influence measures vs. Affiliation features vs. Topic entropy
(η).

combined with the rest of the features. As detailed analy-
sis of text features is out of scope for this paper, we leave
a more in depth investigation of these phenomena for future
work.

While all model variants are statistically significantly bet-
ter than the baseline, the absolute scores are still not very
high. This indicates there is still considerable variance in the
data that the current model and feature set cannot capture. As
a future work, we intend to refine the contextual text features
from the email conversations, possibly using some of the re-
cently developed discourse-aware neural language models
(Gu, Yoo, and Ha 2021).
Statistical analysis — To confirm empirical implications

from the previous section and provide a more in-depth look
at the features, we perform statistical analysis summarised
in Table 3. The most interesting insight is that the coeffi-
cients corresponding to the Centrality of the most influential
author and Proportion of authors in the top 10 percentile
in influence, are, indeed, positive and among the largest in
absolute value. This highlights that among the people who
are influential in the email networks, there is a substantial
number of individuals who are proficient in contributing to
successful drafts.

Another interesting observation is that author affiliations
(which are also indirectly connected to influential partici-
pants, as demonstrated in §3.3, Figure 13) are an impor-
tant feature group, particularly affiliations such as Cisco and
AT&T. Moreover, topic entropy is also an important feature
group, which was also shown to be related to influential par-
ticipants in our analysis from §3.3, Figure 9.

As regards the initial question in this chapter about
whether influential participants write successful drafts, we
have confirmed that the answer is positive, i.e., we have
shown that having authors that are high in influence scores or
are affiliated with high influence organisations does indeed
increase the chances of a draft being adopted.

4.3 Discussion
We now answer the research questions (RQ) in §1 with the
analysis conducted so far.
RQ (i) — We conclude that the IETF is still reasonably cen-
tralised, but that this has improved over the years. However,
removing around 20%-25% most influential participants still
fragments the entire network (§3.1, Figure 3). The most in-
fluential people are the ones with highest degree of engage-
ments within the community who also tend to be more in-



volved in draft authoring activities (§3.2, Figure 10). How-
ever, we also observe that over the years more people (even
the ones less influential in the email network) are getting in-
volved in draft authoring activities (Figure 10). This shows
that these activities, while centralised to a certain degree, are
still open to contributions from the wider IETF community.
RQ (ii) — We observe that the influential participants show
a much higher level of engagement with the community
(§3.2). A considerable proportion of total emails is sent by
the top 10% of influential participants (Figure 4). Compared
to the rest of participants, they are active in more areas (Fig-
ure 5), are active within the IETF for a longer period of time
(Figure 6), and participate in a more diverse set of topics
(Figure 9). Finally, their influence extends from the mailing
lists to other activities such as draft authorship.
RQ (iii) — A significant overlap and correlation is observed
between influential authors from co-authorship network and
email networks (§3.3, Table 1). This shows that a large set
of authors exhibit an ability to co-author drafts as well as en-
gage with participants on the email networks, thereby trans-
lating their influence from email networks to co-authorship
and vice versa. The statistical analysis shows that influence
of draft authors in the email networks does impact the pos-
sibility of a draft getting adopted (§4.2, Table 2 & 3). This
might hint at the ability of participants who hold a domain
expertise to be able to engage better with the community.
Several WG chairs are already in the top percentile influen-
tial category in both the email and co-authorship networks
before taking up these leadership roles, which further ele-
vates after taking up such leadership roles (Figure 12).
RQ (iv) — A considerable portion of influential participants
(∼30%) are affiliated to one of the more prominent organ-
isations (e.g., Cisco or Ericsson) (§3.3, Figure 13). Partici-
pants from different organisations do considerably collabo-
rate (Figure 14). Moreover, the level of such collaboration
is found to have increased with time. Most importantly the
statistical analysis shows that being affiliated with a promi-
nent organisation positively impacts the chances of a draft in
getting adopted by a WG, thereby directly driving the inno-
vation process (Table 2 & 3).

5 Related Work
Influence in social graphs has been studied in many domains
including Twitter (Cha et al. 2010; Weitzel, Quaresma, and
de Oliveira 2012; Anger and Kittl 2011), Instagram (Zarei
et al. 2020) and decentralised social networks (Bin Zia et al.
2022; Hassan et al. 2021). For example, (Ye and Wu 2010)
measured the impact of follower influence on message prop-
agation. Others have focused on devising metrics to cap-
ture influence: similarly to (Kourtellis et al. 2013; Weitzel,
Quaresma, and de Oliveira 2012; Solé-Ribalta et al. 2014),
we use betweenness centrality as a metric of influence.

Online collaborative communities such as Wikimedia
(Bosu and Carver 2014a) and Open Stack have also been
studied for understanding communities, collaboration, strat-
egy making, and organisational structures, through mailing
lists and platform interactions (Dobusch and Kapeller 2018;
Bosu and Carver 2014a; Zhang et al. 2020). Bosu and Carver

(2014b) highlight that contributors with much higher repu-
tation are successful in seeking reviews from the community
in a much shorter time span and are more likely to get their
suggestions accepted. This is well aligned with most of our
findings related to the impact of influential people on the
Internet-Draft adoption process. Zhang et al. (2020) observe
that in the open source software (OSS) ecosystem, several
participating organisations (firms or companies) may engage
in intentional or passive collaborations, or they may con-
tribute in an isolated way. They find that an organisation’s
influence in the collaboration network is positively corre-
lated with its scale of contribution within the ecosystem.
In some ways, this is similar to our observation related to
prominent affiliated organisations in the co-authorship net-
work and their ability to collaborate and produce drafts.

Other studies focusing on mailing list data include OSS
mailing lists (Bird et al. 2006; Rigby and Hassan 2007), and
the popular Enron dataset (Klimt and Yang 2004). While
the Enron data set is often used for classification of emails
into categories (Madjarov et al. 2012), there are also several
studies of organisation interaction patterns on it. Namely,
(Tang et al. 2008; Kossinets, Kleinberg, and Watts 2008)
are concerned with developing methodologies for studying
how communication evolves over time. In contrast, Diesner,
Frantz, and Carley (2005) focus on providing insights more
than on developing a methodology, revealing that organisa-
tional structure is reflected in email communication patterns.

To the best of our knowledge, this is the first social graph
study of the Internet standards community, although we
build on a number of prior studies and tools (Benthall 2015).
Niedermayer et al. (2017) investigate participant behaviour
in IETF mailing lists, and examine RFC authorship, classi-
fying the Twitter popularity of recent RFCs (Niedermayer
et al. 2016). Our modelling work mainly builds on two
prior studies. McQuistin et al. (2021) characterise the IETF’s
authorship community, analysing the factors that lead to
the successful deployment of protocol standards. Similarly,
Nikkhah et al. (2017) analyse RFC adoption, but through
the characteristics of the RFCs themselves. In contrast, we
provide a more extensive analysis of the social graphs, aug-
mented with IETF Datatracker data, providing context for
how influence translates to other IETF activities.

6 Conclusions
This paper characterised the social graph of the Internet
standards community. We observed a core group of partici-
pants (§3.1), revealing that the most influential participants
send more messages, to more IETF areas, participate for
longer, and discuss a wider range of topics (§3.2). We fur-
ther demonstrated through correlation analysis in §3.3 that
influence in the mailing list community translates into in-
fluence in draft authorship network and WG leadership. Fi-
nally, we showed that the social graph properties of IETF
participants positively impact the success of their drafts,
leading to greater chances of WG adoption.

We have revealed a community that is a product of its
open, consensus-driven approach to protocol standardisa-
tion. Despite significant growth over time, and influential



participants remaining an important driving force, the com-
munity has grown better connected and less fragmented,
growing in resilience to departure of influential participants.

This study could support further research in the areas of
online collaborative systems, social science, and the role of
various stakeholders in the development of Internet stan-
dards. For instance, an interesting research avenue would be
tracking the emergence of new technologies, and exploring
whether they are a consequence of new communities form-
ing within the IETF social graph, curating innovative ideas.
Another could be to explore interventions that can ensure
that the correct participants engage early with relevant doc-
uments and WGs. This would help participants to more eas-
ily navigate the growing IETF social graph, and ultimately
improve the process and resulting Internet standards.
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