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ABSTRACT
The majority of real-time multimedia traffic on the Inter-
net is transported using the Transmission Control Protocol
(TCP) or the User Datagram Protocol (UDP). Multimedia
applications would benefit from a protocol that better sup-
ports their particular requirements, but transport layer ossifi-
cation has limited the deployment of such protocols. This pa-
per describes unordered time-lined TCP (uTLTCP), a mod-
ified version of TCP that is more suitable for real-time mul-
timedia applications, whilst also benefiting from widespread
deployability. Proof-of-concept evaluations show that this
protocol increases the utility of the network when compared
with unmodified TCP and UDP.

1. INTRODUCTION
Multimedia applications, including streaming video-on-

demand applications and Voice over Internet Protocol (VoIP)
services, account for a significant and growing percentage
of all Internet traffic [5]. The popularity of these applica-
tions is growing because high-capacity Internet links have
become commonplace, and this allows for an increase in the
usability of multimedia applications. As these applications
grow to take up a larger percentage of all Internet traffic,
the properties of the protocols used to support them at the
transport-layer become increasingly important to both the
applications and the wider network.

At present, applications use either TCP or UDP at the
transport layer, depending on their latency bounds. Inter-
active applications (e.g., VoIP) that have tighter latency
bounds typically use UDP, while non-interactive applica-
tions (e.g., video-on-demand), where the bounds are weaker,
use TCP. These two protocols present a set of trade-offs that
developers must consider when deploying their applications:
TCP introduces delay as a result of guaranteeing reliability,
and while UDP does not introduce delay, but also provides
no reliability guarantees or congestion control. Multimedia
applications would benefit from a more flexible approach to
the trade-off between reliability and latency, while also being
congestion controlled. Introducing an entirely new protocol
to support a multimedia-specific delivery model would be
the prefered solution, but this would limit deployability on
the Internet due to the presence of middleboxes, such as
firewalls and Network Address Translators (NATs).

With this in mind, this paper presents unordered time-
lined TCP (uTLTCP), a set of modifications to TCP im-
prove its support for multimedia applications. uTLTCP
combines, improves and extends on design elements from
TCP Minion [25] and Time-lined TCP [23], to provide a
partially reliable, time-lined datagram protocol on top of
TCP. It makes further novel contributions by providing a

sub-stream abstraction to support different types of traffic
(e.g., control and data) multiplexed across a single connec-
tion. In addition, uTLTCP also allows applications to ex-
press dependencies between packets, which are coupled with
the time-lined selective retransmission algorithm. Together,
these changes are designed to allow the transport protocol
to make efficient decisions about what data to send in order
to increase the utility of the network.

This paper makes a number of contributions:

• uTLTCP, a deployable transport protocol that gives
partial reliability (in the form of timelines and depen-
dencies) and a datagram abstraction over TCP

• A proof-of-concept implementation of the protocol in
FreeBSD, and an example application that uses it

• Evaluations that show that uTLTCP increases the util-
ity of the network when compared with unmodified
TCP and UDP

The remainder of this paper is structured as follows. Sec-
tion 2 gives further details of the motivation for uTLTCP.
Section 3 describes the protocol design, and section 4 presents
evaluations conducted using a proof-of-concept implementa-
tion. Section 5 outlines existing work related to uTLTCP,
and section 6 concludes.

2. BACKGROUND & MOTIVATION
At the transport layer, multimedia applications use either

TCP or UDP, depending on their timeliness requirements.
TCP provides many benefits to developers, including the
ability to use existing, scalable infrastructure, such as con-
tent delivery networks and HTTP caches. In addition, ap-
plications that primarily use UDP can often use TCP as a
fallback; this is because UDP is commonly blocked in en-
terprise firewalls, and can experience difficulties with NATs
[31].

Despite its widespread adoption, the delivery model pro-
vided by TCP is suboptimal for the needs of multimedia
applications. TCP offers guaranteed in-order delivery over
a byte-stream abstraction, but this comes at the expense of
timeliness – TCP will retransmit lost packets ahead of new
data, and therefore introduce delays. While this model is
suitable for applications where reliability is essential, this
is not the case for real-time multimedia applications. Such
applications are better suited to a model that offers partial
reliability; some loss is tolerable if it reduces the amount of
delay introduced.

Given the suboptimality of TCP’s delivery model for real-
time multimedia applications, a number of such applications
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use UDP. In contrast to TCP, UDP offers no reliability or or-
der guarantees, and therefore offers more flexibility to appli-
cations wishing to trade-off reliability with timeliness. Ap-
plications are able to build partial reliability on top of UDP
at the application layer. However, UDP does not include a
standardised congestion control algorithm. This, combined
with the increasing use of multimedia applications, increases
the potential for congestion collapse [8].

Protocols that combine features of both TCP and UDP,
such as the Datagram Congestion Control Protocol (DCCP)
[16] and the Stream Control Transmission Protocol (SCTP)
[32], have been developed. However, deployment of these
protocols has been limited by ossification within the trans-
port layer [12]. In this context, ossification describes the
entrenchment of TCP and UDP. This has occured because
of the widespread use of middleboxes in the network to pro-
vide functionality, such as firewalls, and severely restricts the
deployability of new transport protocols because of their use
of unanticipated transport-layer headers.

The following subsections describe the delivery model that
multimedia applications want from the transport layer, and
further motivate supporting this delivery model by modify-
ing TCP, rather than designing an entirely novel protocol.

2.1 Transport-layer support for multimedia
For many applications, such as file transfer mechanisms,

the reliable byte-stream abstraction provided by TCP is ap-
propriate. However, multimedia applications would ben-
efit from framing data in application data units (ADUs)
[6][11]. These application data units, or datagrams in UDP
and uTLTCP terminology, allow greater flexibility for ap-
plications to define the relationship between the multimedia
codecs used at the application layer, and the protocol re-
sponsible for the data at the transport layer. Applications
should be able to process the contents of each datagram inde-
pendently, and it is this that allows them to be more robust
to packet loss; each datagram is self-contained and should
provide some utility to the receiving application regardless
of the delivery of other packets.

In real-time multimedia applications, the time by which
packets are received is as important as the rate of packet
loss, as packets are not useful after the time they are to be
played out. This is in contrast to other applications, such
as file transfer systems, where the utility of a given packet
is constant over time. To motivate this, consider a video
conferencing application. Each packet has a limited period
of time during which it must be delivered, otherwise it can
no longer be used; a frame of video arriving after it was
to be played out cannot be reinserted into the stream. For
other applications, such as video-on-demand streaming, the
timeliness requirements may be relaxed, but they are still
present.

The underlying packet switched networks of the Internet
force protocols to trade-off between reliability and timeli-
ness. This trade-off is intuitive: in order to guarantee suc-
cessful delivery, packets that are lost or corrupted by the
network are retransmitted. Given that congestion and flow
control mechanisms restrict the number of packets in tran-
sit at a given time, it follows that packets will be delayed as
a result of retransmissions. As discussed above, packets of
real-time multimedia data have implicit arrival deadlines af-
ter which they are no longer useful. Therefore, transmitting
packets that have exceeded these deadlines (or, will have ex-

ceeded their deadline before arrival) is futile. Going further
than this, to transmit these packets actually contributes to
a type of congestion collapse: the network is not performing
useful work. Taken to the extreme, the network may be kept
occupied by the transmission of packets that are not useful
to the receiving application and that will be discarded be-
cause they have arrived too late to be used.

The use of a datagram abstraction in uTLTCP rather than
a byte-stream means that out-of-order delivery is more prac-
tical than in standard TCP. Out-of-order delivery removes
the increase in latency associated with head-of-line block-
ing. Head-of-line blocking occurs when the delivery of later
packets is delayed by those sent earlier. This can be seen
in TCP; to enforce in-order delivery, TCP will not deliver
segments that have arrived if an earlier segment is missing.
Those segments that have arrived may have to wait until the
missing segment has been retransmitted, incurring a round-
trip time of additional latency. In addition to out-of-order
delivery, a datagram abstraction allows for TCP’s reliability
guarantees to be relaxed. Multimedia applications are tol-
erant to a certain amount of packet loss; small amounts of
loss will be imperceptible to users.

In order to support the time sensitivity of multimedia traf-
fic, uTLTCP allows applications to specify the deadline asso-
ciated with each packet. This, combined with an estimate of
the round-trip time between the sender and receiver, is used
to determine whether a packet should be sent. If a packet
is unlikely to be received in time to be useful, it is not sent.
A sub-stream abstraction is used in order to allow appli-
cations to mix timelined and non-timelined traffic across a
single connection; this is helpful for applications that send
control information in addition to multimedia traffic. As an
example, when the Real-Time Protocol (RTP) [30] is used
over TCP, it is multiplexed with the RTP Control Protocol
(RTCP) over the same TCP connection [18]; however, RTP
and RTCP packets do not share the same timeliness require-
ments. The sub-stream abstraction accommodates this.

The introduction of timelines is at odds with the desire to
only insert useful packets into the network. In many encod-
ing formats a frame structure is in place that generates in-
terdependencies between packets. For example, in MPEG-1
video [19], P-frames are dependent on the successful delivery
of the previous I-frame. However, timelines may mean that
this I-frame is not delivered, and so sending the P-frame
would be futile (this paper uses MPEG-1 as an example
because it is relatively straightforward; frame interdepen-
dencies also exist in newer codecs, such as H.264 [33]). To
accomodate these interdependencies, uTLTCP allows appli-
cations to express the dependencies between packets. Where
a given datagram’s dependency has not been successfully
transmitted (i.e., it has expired before being sent), then that
datagram should not be sent, if a suitable alternative is avail-
able.

To complete the discussion of support for multimedia ap-
plications at the transport layer, congestion control and avoid-
ance mechanisms should be considered. These are algo-
rithms that are designed to prevent congestion collapse from
occuring by limiting the rate at which new packets can enter
the network. From the discussion about timeliness, it follows
that lowering the rate will increase the delay to packets be-
ing queued up to be sent, and that this has a negative impact
on multimedia applications. Congestion control algorithms
should be developed to balance the timeliness requirements
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of multimedia traffic, the nature of multimedia codecs and
their sensitivity to changes in sending rate, and the other
applications using the network. The development of such
an algorithm is outwith the scope of the work presented
here. uTLTCP does not change TCP’s mechanisms; how-
ever, these are suboptimal for multimedia systems [27] and
incorporating multimedia-friendly congestion control mech-
anisms into uTLTCP should be the subject of future work.

2.2 Transport-layer ossification
The discussion to this point has given the argument that

an optimal delivery model for multimedia applications is
sufficiently different from that of other applications that it
should be supported at the transport layer. It remains to
motivate the particular design direction taken by uTLTCP,
that is, to provide this delivery model by way of modifi-
cations to TCP rather than by designing a new transport
protocol optimised for the class of application. Initially,
certainly from an ideological standpoint, designing a novel
transport protocol for multimedia applications would be the
desirable strategy.

However, as outlined in the previous section, the deploy-
ability of new protocols is severely limited by ossification
in the transport layer [10]. There are a number of causes
of this, including the desire to recoup investment in existing
systems – organisations are not motivated to adopt new pro-
tocols when existing ones work. The primary, and perhaps
the most intractable, cause of ossification, however, is the
widespread use of middleboxes. Firewalls and NATs often
violate the end-to-end principle [29] by inspecting packets
beyond the IP headers; for example, firewalls often drop
packets based on port numbers. The presence of middle-
boxes in the Internet can be justified by the essential ser-
vices (e.g., firewalls and NATs) they provide, and their use
is likely to continue.

This discussion then leads to the idea of modifying an
existing protocol to provide support for multimedia applica-
tions. Ossification has led to two choices: TCP and UDP.
Beyond the reasons already given, the choice between these
two protocols is derived from either “building up” from UDP
or “tearing down” from TCP to the delivery model described
in the previous section. Many features of TCP, such as re-
liability (albeit partial) and congestion control are desirable
for the design of uTLTCP. Modifying or relaxing these in
TCP is more practical than implementing them entirely on
top of UDP. For example, partial reliability can be achieved
in TCP by changing the data that is retransmitted; in UDP,
retransmissions would need to be added, and this is arguably
more challenging [17].

The issue of ossification does not only limit the devel-
opment of new protocols, but it also restricts the extent
to which existing protocols can be modified. Honda et al.
[13] present a study of the extensibility of TCP. This work
provides a strong argument for the feasibility of the design
decisions made in uTLTCP described in the next section.

3. UNORDERED TIME-LINED TCP
In section 2, three sets of modifications were given as being

beneficial to multimedia applications: the use of application
data units, timelines, and dependencies. In this section, each
of these modifications will be described in detail.

The modifications are presented in order. Datagrams en-
able partial reliability, which allows timelines to be imple-

mented. With timelines comes the possibility of data being
sent that is not useful to the receiver; this motivates the
inclusion of dependencies. Alongside an explanation of the
modifications, the API that is exposed to developers is also
given.

It is important to note that none of the modifications pro-
posed change the wire protocol of TCP. It would not be
possible to determine if a host is running TCP or uTLTCP
from the packet headers. Wire-compatibility with TCP is
essential to maximising the deployability of uTLTCP.

3.1 Datagrams and framing
Timelines and dependencies are only possible if partial re-

liability is enabled; expired packets, or packets dependent on
expired packets, aren’t sent. Providing partial reliability is
achieved by adopting application data units, or datagrams,
at the transport-layer. The use of datagrams allows appli-
cations to decide what data can be processed independently,
and therefore the impact of a datagram not being received
is reduced.

Building a datagram abstraction on top of the byte-stream
used in TCP requires modifications on both the sender and
the receiver; the sender must bypass optimisations in TCP
that send longer segments where possible, while the receiver
must be aware of the boundaries between datagrams. The
modifications to TCP required at both the sender and re-
ceiver are detailed in the sections that follow.

Sender-side modifications
The sender-side modifications required to provide a data-
gram abstraction are based around ensuring that the appli-
cation is able to define the contents of an outgoing TCP
segment, or in other words, that a single write() call at the
application-layer translates into a packet being sent on the
network. In modifying the existing TCP protocol, there are
three changes that need to be made: (i) disabling the Nagle
[24] algorithm; (ii) marshalling the data before sending; and,
(iii) exposing the path maximum transmission unit (PMTU)
to allow applications to make efficient use of the protocol.

The Nagle algorithm is designed to increase the efficiency
of TCP senders by reducing the overhead of the protocol.
The size of a typical TCP/IP header is 40 bytes. This
means that an application sending only 1 byte of data will
send a packet 41 bytes in length, excluding additional head-
ers from lower layers. The Nagle algorithm aims to amortise
the 40 byte overhead of sending a TCP segment by buffering
up smaller blocks of data into larger segments. Intuitively,
this increase in efficiency comes at the expense of timeliness;
small amounts of data sent at the application layer will be
queued while waiting for subsequent writes. uTLTCP dis-
ables the Nagle algorithm by sending segments immediately,
avoiding the resegmentation queue and therefore eliminat-
ing the delay introduced by the algorithm; this is the same
behaviour as the TCP_NODELAY socket option. Performance
evaluations conducted on disabling the Nagle algorithm [22]
show that performance, in terms of latency, can be improved.
However, they also serve as a warning: poor buffering at
the application layer will lead to the problems that moti-
vated the Nagle algorithm. Some of the multimedia appli-
cations suitable for uTLTCP, such as VoIP services, can
generate small payloads; however, these applications benefit
from making the trade-off between timeliness and efficient
bandwidth use.
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size_t send_dgram(int fd, char *buf, size_t len);

size_t recv_dgram(int fd, char *buf, size_t len);

size_t getPMTU(int sockfd);

Figure 1: Minimal uTLTCP API for datagram support

While bypassing the Nagle algorithm results in most appli-
cation layer writes being sent as individual TCP segments,
it does not eliminate the possibility that two or more writes
may be coalesced. This may occur, for example, when two
consecutive segments are retransmitted; rather than trans-
mitting each of these as separate segments, these may be
coalesed. While this is desirable behaviour (it does not in-
troduce unnecessary delay, while also increasing bandwidth
efficiency), it does mean that a read at the receiver may
not correspond to a single write at the sender. In addition
to this, Honda et al. [13] show that the behaviour of some
middleboxes may include resegmenting packets; for exam-
ple, they may receive two smaller segments, and forward
only one larger segment. Therefore, data sent from the
application-layer must be marshalled in order to preserve
its boundaries. If segments are combined, for example, then
the receiver must have sufficient knowledge to separate these
into datagrams to deliver to the application.

In uTLTCP, marshalling is achieved by prepending and
appending a zero byte to the data before it is sent on the net-
work. To ensure that zero does not appear in the data being
marshalled, uTLTCP encodes the data using the Consistent
Overhead Byte Stuffing [4] (COBS) algorithm. This is a low
overhead encoding algorithm that removes occurences of the
zero byte, allowing it to be used as the marshalling charac-
ter. Using two characters (i.e., appending and prepending)
ensures that if middleboxes resegment packets in a way that
splits datagrams across segments, it is still possible to recon-
struct these at the receiver. The COBS encoding of appli-
cations writes takes place in a userspace library before the
segments are written to the socket.

The sender-side modifications introduce two of the func-
tions shown in figure 1: send_dgram() and getPMTU(). The
send_dgram() API call is placed in a userspace library; it
takes the socket file descriptor, data buffer, and length of
data to be written. The data to be sent is COBS-encoded,
and then written to the socket, with the length of the data
written is returned. The getPMTU() API call returns the
path MTU for the connection. If a segment is larger than
this value, then it will be resegmented. By providing this
value to applications, the number of resegmentations can
be reduced, and this increases the efficiency of the COBS
decoding algorithm at the receiver.

Receiver-side modifications
With the sender modified to send a segment for each write
at the application layer, it remains for the receiver to be
modified to turn each incoming segment into a read at the
application layer. In modifying the TCP protocol at the
receiver, there are two changes to be made: (i) avoiding
reassembly of out-of-order segments into an in-order byte-
stream; and (ii) unmarshalling the data before delivering it
to the application.

As TCP supports an in-order byte-stream abstraction, it
deals with the reception of out-of-order segments by buffer-
ing them in a reassembly queue, until prior segments have

been received. For applications that are dependent on relia-
bility, this makes sense: applications would themselves have
to reassemble delivered segments. However, where applica-
tion data units are being used, each segment contains a unit
of data that is useful to the application independently of
other units. Applications using a datagram abstraction are
designed to deal with lost and out-of-order datagrams; there
is no value in delivering datagrams in order.

In uTLTCP, the kernel is modified to ensure that each
read from the socket buffer delivers a single TCP segment
to the application. In order to maintain wire-compatibility
with TCP, while incoming segments bypass the reassembly
queue, the standard TCP responses to out-of-order packet
reception are maintained. This includes sending acknowl-
edgements; while the segment is delivered to the application,
reception statistics are maintained as if the segment had not
been received.

Given that the sender-side modifications cannot guaran-
tee that a TCP segment corresponds to a single datagram, a
userspace library is used to decode incoming segments into
datagrams for delivery to the application. In most cases, in-
coming segments from a uTLTCP sender will contain one or
more complete COBS-encoded datagrams; in this case, the
zeroes are removed from the beginning and end of the data-
gram, and the remaining data is decoded using the COBS al-
gorithm. However, a datagram may span more than one seg-
ment, and to support this the userspace library must know
how to coalesce segments. To support this the kernel is mod-
ified to append the TCP sequence number corresponding to
the segment being read. This, combined with the length of
the segment, is sufficient to allow segments to be combined;
this combination continues until a complete COBS-encoded
datagram has been read.

The receiver-side modifications introduce the recv_dgram()
API call shown in figure 1. The functions takes the socket
file descriptor, data buffer, and maximum read length; it
writes a datagram to the buffer, and returns the length of
the datagram. The datagram is a COBS-decoded segment
that is either read from the socket receive buffer, or has been
buffered in userspace. Userspace buffering of datagrams can
occur where a single segment contained multiple datagrams;
only one is delivered with each call to recv_dgram().

3.2 Timelines
The use of timelines is designed to prevent expired seg-

ments from reaching the receiver, by having the sender esti-
mate the time at which they will be received. As segments
are sent, several steps are taken within the kernel: (i) it is
determined if the segment will arrive on time, based on the
presentation time set by the application; (ii) if the segment
has expired, and a suitable, unexpired segment is found,
then this is sent instead.

This subsection describes the design of timelines within
uTLTCP, and particularly how it answers the questions that
the basic outline above presents, including what is meant by
a “suitable” replacement segment, and what happens if the
replacement is smaller than the original segment. It begins
by discussing how a segment is deemed to have expired,
followed by the replacement segment policy adopted, and
concludes with a description of the sub-stream design.
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size_t send_dgram(int fd, char *buf, size_t len);

size_t send_dgram(int fd, char *buf, size_t len,

uint32_t playoutTime);

size_t send_dgram(int fd, char *buf, size_t len,

uint8_t substream);

size_t recv_dgram(int fd, char *buf, size_t len);

size_t recv_dgram(int fd, char *buf, size_t len,

uint8_t *substream);

void setClockrate(uint32_t clockrate);

size_t getPMTU(int sockfd);

Figure 2: uTLTCP API including timeline and sub-stream
support

Segment liveness
To estimate if a segment will arrive at the receiver on time
to be played out, two values are required: (i) an estimate
of the round-trip time between the sender and receiver, and
(ii) the playout time of the segment.

The round-trip time (RTT) estimate used is important.
If this estimate is too optimistic (i.e., the RTT estimate is
too low) then the protocol will not be effective in preventing
expired segments from entering the network. However, if
the estimate is too high, then useful, unexpired data, will
not be sent. The protocol leans towards using an optimistic
estimate; not sending useful data is more damaging than
sending unexpired data. The estimate used is the smoothed
round-trip time (srtt) [26][14] value computed as part of
the TCP protocol specification. This is a weighted average
that moves slowly towards the correct average, and responds
slowly to rapid variations in round-trip time.

uTLTCP is designed for multimedia applications, and these
applications use a wide number of codecs. To support this,
the API is extended as shown in figure 2 to allow applica-
tions to specify both a playout timestamp, and the clock
rate for these timestamps; setClockrate() takes the clock
rate expressed in Hz. The timestamp of the initial segment
sent, plus half of the round-trip time estimate, is taken as
the start of the playout of the timelined segments. For sub-
sequent segments, the deadline is calculated using the offset
from this initial time. The offset is calculated using the
clockrate, playout time, and round-trip time estimate. An
estimate is also made of the current time on the receiver (in
terms of the playout of received datagrams). If the segment
is estimated to arrive after the current estimated playout
time, it has expired, and should not be sent. The next step
is to select a suitable replacement to be sent in its place.

Segment replacement
Replacing expired segments is important, as it increases the
chance of more unexpired data reaching the receiver. The
ideal replacement segment is one that is timelined, unex-
pired, unsent, and appropriately sized. Expired segments
are replaced only with timelined data, because the appli-
cation has expressed a time bound for these segments. In
addition, unsent data is preferred because sent data already
has the potential to have been successfully received – if it
hasn’t, then upon retransmission, it will be replaced if it has
expired. A replacement segment is not suitable if it is larger
than the segment it is replacing; smaller replacements are
suitable, and they will be discussed in the next subsection.

The replacement of expired segments with unexpired and
unsent segments is the preferred solution. However, if there
is not a sufficient number of segments in the socket send
buffer, then these conditions cannot be met. uTLTCP will
send a segment that has already been sent if this is all that
is available, and similarly, will resend the expired segment
if no unexpired segments are available. This behaviour is
designed to ensure that TCP flow and congestion algorithms
are not affected. This also aids deployability; data needs to
be sent to ensure this.

Sub-streams and padding
uTLTCP includes a sub-stream abstraction, where data-
grams (i.e., COBS-encoded segments) are given stream types.
Primarily, uTLTCP flows consist of three types of stream:
one padding stream, one timelined stream, and one or more
auxiliary non-timelined streams. Each segment of data writ-
ten at the application layer has a stream identifier prepended
before being encoded using COBS. This identifier is then
removed by the userspace datagram library at the receiver,
and the datagram processed appropriately.

When a replacement segment is sent that is smaller than
the original, a datagram within the padding stream is ap-
pended to the replacement. This datagram is sized to ensure
that the TCP segment is the same size as the original; this
results in better deployability, and allows for receivers with-
out kernel modifications. At the receiver, datagrams within
the padding stream are discarded by the userspace datagram
library and are not sent to the receiving application.

The sub-stream abstraction differentiates between time-
lined and non-timelined data, and this allows for these two
types of data flows to be multiplexed across the same connec-
tion. As shown in figure 2, the API has been augmented to
allow for the specification of the substream identifier. This
can be any integer, above 2 (1 is reserved for the padding
substream, while 2 is reserved for timelined data), chosen by
the application.

Example application
To illustrate the timelines API and the motivation for the
sub-streams abstraction, consider an application using RTP
and RTCP. The RTP packets are timelined according to the
codec, which specifies a clock rate based on the sampling in-
terval or playout time. For MPEG-1 video, the clock rate is
90000Hz, and this would be specified to uTLTCP using the
userspace library call setClockrate(90000). RTP times-
tamps would therefore be sent using the send_dgram(fd,

buf, len, presentationTs) call, where presentationTs is
the presentation timestamp of the RTP packet. As RTCP
packets are not explicitly timelined, they are sent using the
send_dgram(fd, buf, len) call; by default, these will be
sent on stream identifier 3, as this is the first non-timelined
sub-stream.

If there is an additional stream of non-timelined control
data, such as that from the Real Time Streaming Proto-
col (RTSP), then the application must explicitly specify the
stream identifier it wishes to use. For example, when send-
ing RTSP data it may use the send_dgram(fd, buf, len,

substream) call; then, the receiving application can use
recv_dgram(fd, buf, len, substream) to receive both the
datagram, and the sub-stream identifier. A more up-to-date
protocol that would benefit from transport-layer support of
a sub-stream abstraction is WebRTC [1], which includes sup-
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port from multiple independent data channels. These data
channels could be mapped to uTLTCP sub-streams.

Figure 3 shows how application data units written at the
application layer are modified before being passed to the
transport layer. First, the single byte sub-stream identifier
is prepended to the ADU. This is then COBS-encoded, and a
zero is appended and prepended to the result. It is this zero
delimited block that is then passed to the transport layer.
The worst-case overhead of the COBS encoding algorithm
is 1 byte in every 254 bytes, or 0.4%, as shown in figure 3.
While this is a low overhead, this combined with disabling
the Nagle algorithm means that uTLTCP is more efficient
with moderately sized datagrams, in terms of being able to
amortise the overhead of both COBS and TCP headers.

3.3 Dependencies
While it is possible for many datagrams to be processed

independently by the receiving application, for most multi-
media applications there exists an interdependency between
datagrams. To motivate this, figure 4 shows the interdepen-
dencies between different frame types in MPEG-1 video. In
MPEG-1 [28], video is encoded using three frame types: I
(independent), P (predictive) and B (bi-directionally predic-
tive) frames. In terms of dependencies, P frames are depen-
dent on earlier I and P frames, while B frames are dependent
on both the previous I or P frame, and the next I or P frame.
The timeline modification may lead to an expired frame not
being sent; if this is the case, then any P or B frames that
depend on it will not be useful to the receiver. Therefore,
the segments containing these frames should also be treated
as if they have expired.

To enable the kernel to use dependencies to check if a
packet should be sent, the dependencies need to be expressed
by the sending application. The modifications required to
the API are described in the next section.

Expressing dependencies
To allow applications to express dependencies between data-
grams, the API has been extended to include the specifica-
tion of a sequence number for each datagram. In addition,
the sequence number of the datagram upon which the data-
gram being sent depends can also be specified. Figure 5
shows the extended API used to support this.

Segment replacement
If dependencies are expressed by the application, then they
are used as an additional factor in the selective retransmis-
sion algorithm introduced by timelines. If a given datagram
expires (i.e., it is not sent successfully before reaching the
end of its timeline), then any datagrams that are dependent
on it also expire. This means that if the datagram is to be
sent (either for the first time, or as a retransmission) then,
where possible, it will be replaced by a suitable alternative.

Only the sending API calls have been modified, as depen-
dencies are only used at the sender side and are not trans-
mitted with the datagram. Where the API function does
not include the sequence number of the datagram on which
the datagram being sent depends, it is assumed that it is
independent. This translates to being dependent on itself,
in terms of the kernel level modifications made to support
dependencies.

Example application
To motivate these changes, consider an application stream-
ing real-time video using MPEG-1. The first 9 frames may
be as shown in figure 4, and these may have sequence num-
bers from 0 to 9. The first datagram (sequence number 0)
contains an I-frame; to express that this is independent, it
sets its dependency to itself, 0. This can be set explicitly,
or will be assumed if no sequence number is given in the
call to send the datagram. The next datagram (1) contains
a B-frame that is dependent on both datagram 0, and on
datagram 3. Given that datagram 3 is that the API lim-
its dependencies to a single datagram, datagram 1 sets its
dependency to datagram 0. This follows until the next in-
dependent frame (shown in figure 4 as a frame without any
arrows pointing into it) is sent.

This discussion assumes that a frame of MPEG-1 video
corresponds to a single datagram; of course, typically, this
will not be the case. A single frame may be spread across
several datagrams, depending on the type of frame (I-frames
are larger than P-frames, which are larger than B-frames).
To express this using the API, the datagrams that comprise
a single frame will have different sequence numbers, the same
timestamp, and be dependent on each other. This means
that if one datagram containing a part of a frame is lost,
then it will only be resent if it is both on time, and if the
other parts of the frame have not expired.

4. EVALUATION
The motivation for uTLTCP is to design a transport layer

protocol that is more performant than existing protocols,
whilst also being deployable. Therefore, to evaluate the ex-
tent to which the design of uTLTCP has met these goals,
the evaluation must focus on both the performance of the
protocol against other protocols, and also on its deployabil-
ity.

The first part of this section presents performance tests
carried out on a testbed that measures how uTLTCP per-
forms again TCP and UDP, with performance being mea-
sured using a number of metrics. The second part discusses
the work by Honda et al. [13] that is used to justify the claim
that uTLTCP is deployable, and gives details of an evalu-
ation to add to this justification. The section concludes by
discussing and critically reflecting on the evaluation.

4.1 Performance
The main purpose of designing any new protocol should

be that it is in some way“better” than what has gone before.
In motivating the protocol it has been shown that the API
provided by uTLTCP is better for application developers in
that it allows them to be more expressive about the traffic
their applications are generating. However, it remains to be
shown that uTLTCP is better in terms of its performance.

This section begins by describing the metrics that will be
measured as part of the evaluation, and outlining the de-
sign of the testbed upon which it will be carried out. The
remainder of the section provides the results of the evalu-
ation, empirically motivating each change as it builds on
the previous change, beginning with the introduction of the
datagram abstraction.
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Figure 3: On-the-wire representation of application data units

Figure 4: MPEG-1 video frame prediction between I-frames
(red), P-frames (orange) and B-frames (yellow)

size_t send_dgram(int fd, char *buf, size_t len,

int seq);

size_t send_dgram(int fd, char *buf, size_t len,

uint32_t expiryTime,

uint16_t seq, uint16_t dep);

size_t send_dgram(int fd, char *buf, size_t len,

uint16_t seq, uint16_t dep);

size_t recv_dgram(int fd, char *buf, size_t len);

size_t recv_dgram(int fd, char *buf, size_t len,

uint8_t *substream);

void setClockrate(uint32_t clockrate);

size_t getPMTU(int sockfd);

Figure 5: uTLTCP API including dependency support

Experimental design and methodology
For the most part, the performance evaluations are carried
out using the testbed topology shown in figure 6. In order
to evaluate the performance of uTLTCP with respect to
other protocols, the protocols used at the sender and receiver
hosts are varied as shown in table 1. Where TCP is used,
the TCP_NODELAY socket option is enabled, as this is not a
contribution of the work presented here. The performance of
a uTLTCP sender and a TCP receiver is evaluated because
this configuration is more deployable than having a uTLTCP
receiver; userspace libraries can be used on the TCP receiver
to allow it to decode COBS-encoded datagrams, although
without benefiting from the decrease in latency.

Broadly, the methodology is to send a number of packets
using the listed protocols between the sender and receiver
and measure performance with respect to a set of metrics,
with the packet loss rates being varied between each eval-
uation. More specifically, 10,000 packets will be sent, with

Figure 6: Testbed topology

Label Sender Receiver
A TCP TCP
B UDP UDP
C uTLTCP TCP
D uTLTCP uTLTCP

Table 1: Protocols under evaluation

20ms between each packet; where timelines are being tested,
the clockrate is 8000Hz. The size of datagrams will alter-
nate between 550 and 650 bytes to allow for padding to be
tested. The packet loss rates being tested are 0%, 2%, 4%,
8% and 16%. Finally, evaluations will be run 10 times for
each metric and protocol combination.

The clock rate and packet sizes have been selected to im-
itate that of audio transmission. However, in such appli-
cations, packet sizes are usually constant. They vary here
only to to allow padding to be tested. The choice of clock
rate and packet size means that TCP’s flow and congestion
control algorithms may not be exercised during these evalu-
ations; this may affect the throughput and goodput metrics
being measured.

The metrics that will be measured are:

Average throughput
This is the amount of data delivered to the receiving
host, divided by the time taken to deliver it. This in-
cludes protocol headers, padding, and duplicate pack-
ets, where appropriate.

Average goodput
This is the amount of data delivered to the receiving
application, divided by the time taken to deliver it.
This excludes protocol headers, padding, and retrans-
missions, where appropriate. In addition, the goodput
metric used here has a narrower definition than pre-
sented elsewhere [8]; packets that arrive after the time
that they are to be played out will not be counted.

Average latency
This is the average one-way latency between the sender
and receiver as measured at the receiver.

Average interarrival jitter
This is the average delay variation between consecutive

7
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Receiver 2

Router 1 Router 2

Figure 7: Testbed topology for TCP fairness measurements

packets delivered to the application. As with goodput,
packets that are too late (i.e., arrive after their playout
time) are not counted. This is defined in RFC 3550
[30].

To support these metrics, each packet will contain a se-
quence number, and two timestamps, in both microseconds
and in units of the clock rate. The sequence number will
allow the timing offset from the previous packet in the se-
quence to be calculated (for goodput and interarrival jitter
calculations), while the clock rate timestamp will allow inter-
arrival jitter to be calculated. The microsecond timestamp
is used to measure latency. The clocks on both the sender
and receiver are synchronised to a central time server us-
ing the Network Time Protocol (NTP) [21]. Dummynet is
used specify the bandwidth and RTT values shown in fig-
ure 6, and is also used to modify the packet loss rate. A
combination of tcpdump and tcptrace is used to measure
throughput and goodput; other measurements are taken by
the application.

The fifth metric that will be measured is Jain’s fair-
ness index [15]. This is a measure of the equality of the
bandwidth allocation between competing flows. For n con-
nections, where xi is the bandwidth for the ith connection,
the fairness index is defined as:

fairness index =
(
∑n

i=1 xi)
2

n
∑n

i=1 x
2
i

(1)

Figure 7 shows the topology of the testbed used to calcu-
late the fairness index. uTLTCP will be used to send data
from sender 1 to receiver 2, while TCP will be used between
sender 2 and receiver 1. These two flows will be long-lived
and started at the same time, the bandwidth allocation that
they each receive will be measured at the receivers, and the
fairness index calculated using equation 1.

Datagram and framing
Figure 8 shows throughput. Throughput is higher for the
TCP-based protocols because TCP is a reliable protocol,
and so packets are retransmitted if lost. This means that
the variable factor here is the time that it takes to send all
of the data, giving a significantly higher throughput than
UDP at higher loss rates. There is no significant variation
in throughput between the three TCP-based protocols (la-
belled A, C and D). This is expected because none of the
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Figure 8: Throughput vs packet loss for datagram modifi-
cations
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Figure 9: Goodput vs packet loss for datagram modifications

modifications introduced by datagrams change the amount
of data being transmitted.

Figure 9 shows goodput. For all protocols, goodput is
lower than throughput. While UDP shows goodput falling
rapidly, the TCP-based protocols do not. Given the de-
lays introduced by packet loss (i.e., head-of-line blocking in
TCP), goodput should have been substantially lower. It may
be the case that the evaluation code is incorrectly identifying
packets as having arrived on time, and is therefore showing
a higher than expected goodput result. Goodput should in-
crease substantially when using a uTLTCP receiver, because
such a receiver removes head-of-line blocking. The results
given here do not adequately reflect this.

Figure 10 shows latency. For UDP, latency does not vary
significantly as the packet loss rate is increased. This is
somewhat intuitive; lost packets are not retransmitted, and
therefore there is no increased delay to subsequent pack-
ets. Latency increases as the packet loss rate increases for
the TCP-based protocols. Where head-of-line blocking is
removed (i.e., when a uTLTCP receiver is used), latency is
significantly lower.

Figure 11 shows interarrival jitter. As for latency, inter-
arrival jitter does not fluctuate significantly when UDP is
used, but increases with the packet loss rate for the TCP-
based protocols. The uTLTCP receiver lowers interarrival
jitter when compared with the TCP receiver, again due to
the removal of head-of-line blocking from TCP.

Jain’s fairness index for TCP and uTLTCP with data-
grams (labeled A) is given in figure 12. uTLTCP is com-
pared with TCP with the TCP_NODELAY socket option en-
abled. This makes the protocols the same in terms of how
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Figure 10: Latency vs packet loss for datagram modifica-
tions
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Figure 11: Interarrival jitter vs packet loss for datagram
modifications

they appear on the wire. Out-of-order delivery does not af-
fect the fairness of the protocol, as no change is made to
how the receiver deals with packet loss. From figure 12, it
can be concluded that uTLTCP with datagram support is
fair to competing TCP flows.

Timelines
As shown in figure 13, the introduction of timelines does not
cause significant variation in throughput. This is expected,
as the amount of data being sent is not changed. In addition,
uTLTCP does not modify TCP’s response to packet loss,
and it is this that would most likely affect the throughput
measurements.

While figure 14 shows a small increase in goodput when
timelines are introduced, this does not appear to be signif-
icant. If the selective retransmission algorithm is working
optimaly, then the majority expired traffic (i.e., “badput”)
should be prevented from reaching the receiver. This is not
the case here, especially at higher loss rates; future work
should focus on when the algorithm works optimally.

Figures 15 and 16 show small declines in latency and in-
terarrival jitter as packet loss rates increase. These are not
significant, and this follows from the discussion of the good-
put results when timelines are introduced. From these three
metrics, it is clear that not enough inconsistent retransmis-
sions are taking place to significantly reduce the amount of
expired traffic arriving at the receiver.

Jain’s fairness index for TCP and uTLTCP with timelines
(labeled B) is given in figure 12. uTLTCP with timelines is
fair to competing TCP flows (with the TCP_NODELAY socket
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Figure 13: Throughput vs packet loss for timeline modifica-
tions

option set). This is somewhat intuitive given that while the
timeline modifications change what data is sent in expired
packets, the amount and timing of the data that is sent is
not changed.

Dependencies
Figures 17, 18, 19 and 20 all show small and insignificant
changes in the metrics being measured as a result of in-
troducing dependencies. This indicates that only a small
number (if any) of additional inconsistent retransmissions
are being made, over and above those being made as due to
timelines.

This is likely to be as a result of the evaluation design: in
testing for dependencies, every fifth packet was expressed as
being independent, with other packets being dependent on
the previous packet. These are relatively small dependency
chains, and this combined with the random packet loss in-
serted by Dummynet, may combine to mitigate the effects
of the dependency modification. As with timelines, further
work should be carried out to expand the evaluation, so as to
identify the patterns of traffic that are most likely to trigger
the modifications present in uTLTCP.

No further measurements of Jain’s fairness index are re-
quired to verify the fairness of the dependency modifica-
tions. These modifications only serve to add an additional
factor to the selective retransmission algorithm introduced
by timelines, and so the fairness index given for uTLTCP
with timelines applies also to dependencies.

4.2 Deployability
A study performed by Honda et al. [13] evaluates the
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Figure 14: Goodput vs packet loss for timeline modifications
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Figure 15: Latency vs packet loss for timeline modifications

behaviour observed when TCP retransmissions are inconsis-
tent (i.e., they do not match the original transmission); it is
this work that justifies the claim made here that uTLTCP
is deployable. The evaluation carried out by Honda et al.
involved sending two segments, with the receiver acknowl-
edging only the first of these. The receiver would then send
a duplicate acknowledgement for the first segment, indicat-
ing that the second segment has been lost. After this, the
sender sends a new segment with the same sequence number
as the “lost” segment, but with a different payload. This was
repeated for segments that were smaller, the same, or larger
than the original transmission. The authors identified four
middlebox responses to inconsistent retransmissions:

• The new segment was received successfully;

• The middlebox cached the original, and sent this in-
stead of the retransmission;

• There was no response at all to the duplicate acknowl-
edgement;

• The connection was reset.

For the most part, the first two of these was observed.
This means that applications should be sufficiently flexible
to receive either new data, or the retransmission. As dis-
cussed previously, the use of a datagram abstraction means
that this is the case for applications using uTLTCP – suffi-
cient information is contained in both the original, and any
new segment, to allow the receiver to make use of the data
independently from other datagrams.

Given the nature of the Internet, it is not practical to
show that every middlebox will interact positively with the
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Figure 16: Interarrival jitter vs packet loss for timeline mod-
ifications
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Figure 17: Throughput vs packet loss for dependency mod-
ifications

modifications that are part of uTLTCP. Therefore, while
Honda et al. go some way towards validating the deploya-
bility claims made in the design of uTLTCP, increasing the
body of evidence that shows this is important. To do this,
an evaluation has been designed to show the deployability
of inconsistent retransmissions, which are the basis for both
timelines and dependencies.

The evaluation comprises a FreeBSD server on the Inter-
net, modified to change the contents of all TCP retransmis-
sions so that they do not match the original data that has
been sent. On the client, tcpdump is used to record all in-
coming packets, and Dummynet [2] is used to drop a small
percentage of packets so as to trigger a retransmission. If the
packets recorded by tcpdump show two TCP segments with
the same sequence number and different payloads (assuming
that sequence numbers have not wrapped around), then this
means that inconsistent retransmissions are permitted.

Only one evaluation of this type has been carried out; this
was completed successfully over a major UK Internet Service
Provider (ISP). Clearly, this is not a significant contribution
to the claim of deployability. More time would be required
to perform a larger number of evaluations of this type. In ad-
dition, performing this purely in software limits the number
of people who are willing or able to complete the evalua-
tion. Ideally, this evaluation would use a small device (e.g.,
Raspberry Pi) that has been pre-configured with the task of
performing the evaluation. Including this as part of future
work is essential to increase confidence in the deployability
of uTLTCP.

4.3 Discussion and critical reflection
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Figure 18: Goodput vs packet loss for dependency modifi-
cations
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Figure 19: Latency vs packet loss for dependency modifica-
tions

The performance evaluation results given in section 4.1
show that there is some benefit, when measuring key met-
rics, to implementing uTLTCP. These results, however, do
not show a significant improvement being gained by using
timelines and dependencies. This may not be fully repre-
sentative of the performance benefits of these modifications,
either because the proof-of-concept implementation is not
performant, or, more likely, because the evaluation testbed
does not provide the optimal environment.

Using Dummynet to simulate packet loss does not fully ex-
ercise the modifications presented here. When simulated in
this way, the packet loss is uniformly distributed through-
out the flow, and this does not reflect how packet loss is
typically observed in the Internet. Packet loss is generally
bursty (i.e., groups of consecutive packets are lost) because
of the drop-tail queueing mechanisms in use at routers. It
is not clear from these results if the modifications presented
here would be more performant when packet loss is more
bursty, and further analysis is required to show this.

In addition, a single, constant delay is present in the evalu-
ation testbed. This is also not representative of the network
conditions in the Internet. Competing flows and changing
links can both contribute to variations in end-to-end delay,
but such variations are not characterised in the evaluation.
It is not clear if uTLTCP would provide an increased perfor-
mance benefit if there were larger delay variations, including
spikes in latency. These modifications should allow for bet-
ter recovery of the application by limiting the expired traffic
in the network.
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Figure 20: Interarrival jitter vs packet loss for dependency
modifications

Given more time, the evaluation would be modified to bet-
ter analyse the conditions under which uTLTCP delivers the
most benefit. The difficulty of implementing the protocol in
FreeBSD has not allowed this within the time constraints of
the work. Modifying the kernel of FreeBSD and rebuilding
it are non-trivial and time consuming tasks, and this limited
the extent to which the implementation could be evaluated.
The performance of the FreeBSD implementation is also lim-
ited by lack of experience in kernel programming.

5. RELATED WORK
uTLTCP primarily builds on Minion, a set of modifica-

tions to TCP proposed by Nowlan et al., and Time-lined
TCP, proposed by Mukherjee and Brecht. In proposing Min-
ion, Nowlan et al. were clear that it adopts a conservative
design in order to guarantee deployability, and to ensure
strict wire-compatibility with TCP. This design means that
while Minion allows for changes to the sending buffer, no
changes are allowed to data that has already been sent –
this rules out inconsistent retransmissions. In Time-lined
TCP, inconsistent retransmissions are used, but in such a
way that leaves gaps in the sequence space and requires a
modified TCP implementation at the receiver.

The work by Honda et al. allows the design of uTLTCP
to combine both Minion and Time-lined TCP, but in such a
way as to minimise the impact on deployability. As discussed
in section 4.2, their study found that inconsistent retrans-
missions did not broadly impact upon deployability. How-
ever, the study also showed that leaving gaps in the sequence
space led to undesirable behaviour from middleboxes, and
that this should be avoided. Taking both of these findings
into consideration means that uTLTCP uses inconsistent re-
transmissions to implement timelines, but uses padding and
consistently sized retransmissions to maximise deployability.

There have been a number of other protocols that have
been proposed to better support multimedia applications at
the transport layer. Dempsey et al. [7] introduce Partially
Error Controlled Connection (PECC). PECC adopts a time-
line approach, in that its retransmission algorithm is mod-
ified to only retransmit packets where the timing require-
ments of the application are met. Grinnemo and Brunstrom
[9] present PRTP-ECN, a TCP-compliant partially reliable
transport protocol. It is similar to other protocols, including
uTLTCP, in that packets will only be retransmitted if they
are thought to be useful to the application. PRTP-ECN does
this by modifying the receiver to acknowledge segments that
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haven’t arrived, preventing their retransmission. However,
modifying the receiver may not be the best strategy in terms
of deployability. Cen et al. describe the Streaming Control
Protocol (SCP) [3], a set of modifications to TCP’s flow and
congestion control algorithms. These modifications aim to
remove the unpredictable latency variations introduced by
TCP’s algorithms. Finally, as discussed earlier, newer trans-
port protocols such as DCCP and SCTP exist to broaden
the support for different applications at the transport-layer.
Deployability of these protocols is a concern, given their rel-
atively low deployment at present [12].

The discussion of related work presented here is not ex-
haustive; there have been many efforts made to improve
transport-layer support for multimedia applications. Those
protocols and designs highlighted here are sufficiently differ-
ent approaches. The main difference between other efforts
and uTLTCP is the focus on deployability. The majority of
the related work in the area has not considered the interac-
tion between the protocol and middleboxes.

6. CONCLUSIONS & FUTURE WORK
This paper presented uTLTCP, a modified version of TCP

that includes datagrams, timelines and dependencies. Pro-
viding a novel transport-layer protocol by modifying TCP
has allowed uTLTCP to be deployable. Ossification has
meant that such modifications are essentially the only way
to provide new functionality at the transport-layer. Evalua-
tions of uTLTCP show that it performs favourably to TCP
and UDP, increasing goodput while reducing latency and
interarrival jitter, all of which are good measures of the per-
formance of protocols for real-time multimedia applications.
Future work should include strengthening the evaluation of
the protocol, either using the current proof-of-concept imple-
mentation, or be implementing the protocol in a simulation
testbed. More work should be done to profile the perfor-
mance of the protocol, and also to bolster the deployability
claim.

This paper, and the design of uTLTCP, largely ignores the
interaction between real-time multimedia traffic and TCP’s
congestion control algorithm. TCP uses a number of al-
gorithms to provide congestion and flow control, and these
algorithms negatively impact timeliness. A number of pro-
posals, including Google’s congestion control algorithm [20],
have been made for congestion control algorithms that are
more suitable for real-time multimedia applications. The
future work that leads from uTLTCP should include incor-
porating one such algorithm and evaluating the resultant
performance.

uTLTCP is but a single point in a wider design space of
deployable domain-specific transport-layer protocols. The
decisions taken in its design (e.g., to modify TCP) reflect the
particular requirements of the domain in which uTLTCP ex-
ists. In the future, other domains may benefit from transport-
layer support for their applications, such as the power con-
sumption requirements of small sensor devices. The design
and use of domain-specific protocols is likely to increase as
it becomes clearer that not all applications are ideally suited
to existing protocols.

Future work resulting from uTLTCP should seek to ex-
plore the design space of deployable transport-layer proto-
cols; “greenfield” development of new protocols is no longer
pragmatic if deployability is a consideration. The design of
other protocols could take on of two approaches: design with

more support for specific attributes of the traffic, such as in-
corporating RTP headers and using this data rather than an
expressive API, or opening up the API and allowing applica-
tions more flexibility and access to the underlying transport
layer. Designs in either of these directions, however, should
consider the existing, entrenched transport-layer protocols
as essential substrates. Some designs will favour modifying
UDP rather than TCP, but either way, UDP and TCP pro-
vide the envelope within which deployable protocols are to
be developed in future.
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