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ABSTRACT
Python has become a popular language for the delivery of intro-
ductory programming courses. Two reasons for this are Python’s
convenience and syntactic simplicity, giving a low entry barrier
for beginners and the ability to solve complex problems with short
snippets of code. However, students exhibit widespread misconcep-
tions about the meaning of basic language constructs, inhibiting
their ability to solve problems and damaging their understanding
of fundamental concepts. In this paper, we document our observa-
tions of level 1 university students over several years, as well as
surveys probing the nature of their misconceptions. We analyze
the misconceptions in relation to a notional machine model for
Python, and show that many students form inadequate and brittle
mental models of the language. Our results indicate that one of the
major sources of misunderstanding is the heavy use of overloading
in Python. Overloading hides the complexity of algorithms and
data structures, often leading students to write code that involves
mutability, sharing, copying, side effects, coroutines, concurrency,
and lazy evaluation – and none of those topics are accessible to
students who haven’t yet mastered basic assignments, conditionals,
and looping. We suggest that Python, when taught alone, is insuffi-
cient as an introductory language: students can gain a firmer grasp
of programming fundamentals when Python is presented alongside
a complementary low level language that makes a notional machine
clear and explicit.
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1 INTRODUCTION
There is a tension among conflicting goals that must be considered
when selecting an appropriate introductory programming language.
These include simplicity [4, 8], expressiveness, convenience, and
industrial relevance [6]. Simplicity is often taken to be syntactic
simplicity, avoiding boilerplate and offering a low barrier to entry.
Lecturers often want to make programming exercises engaging and
entertaining, which requires an expressive language that makes
routine programming tasks convenient. Many students want to be
taught languages that see use in industry. As a compromise that
addresses all of these aims, Python is often chosen for introductory
programming courses [7, 12].

A suitable programming language should help students to un-
derstand a notional machine and to form suitable mental models
[14]. These should be constructed easily from the language syntax.
Without such mental models, students develop only a vague and
inaccurate understanding of basic language constructs and funda-
mental programming techniques. This leads to poor performance
in more advanced study and poor quality programming.

In this paper, we provide evidence that Python’s syntactic sim-
plicity hides a complex notional machine [2], allowing students
to form inadequate and brittle mental models [10]. Our evidence
comprises anectodal observations over several years of several hun-
dred first-year students at a large university, analysis of some of the
features of Python, and a series of surveys asking students probing
questions about the meanings of basic Python constructs.

Our results indicate that teaching Python alone (i.e., without
reference to an explicit notional machine) leads to the formation
of misconceptions and misunderstandings by students. We show
this through a survey of first year students enrolled in an intro-
ductory programming course at a large UK university. This survey
highlighted, for example, that in one instance only 4% of respon-
dents can correctly predict the results of a short Python snippet.
However, we go on to suggest that Python can be effective when
taught alongside languages that share its notional machine, and
that are sufficiently low-level that they expose this machine. To
achieve this, we describe a visual language that shares Python’s
notional machine and that aids in the development of a more robust
mental model. We also present preliminary findings that support
our hypothesis.

Section 2 discusses related work. In Section 3 we analyse some of
the features of Python and discuss the difference between syntactic
and semantic simplicity, demonstrating the difficulty in inferring a
notional machine for Python. Section 4 presents the results of two
surveys of students that probe their understanding of the seman-
tics of basic language constructs, confirming that students form
incorrect and brittle mental models for Python. In Section 5 we put
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forward our hypothesis that augmenting the teaching of Python
with visual languages that share its notional machine reduces stu-
dent error, and allows for the formation of more robust mental
models. Section 6 concludes.

2 RELATEDWORK
Python’s selection as a first language has beenwell studied [3–8, 10–
13]. Much of the rationale for selecting Python, rather than other
languages, is based upon its simplicity, its industrial relevance, and
the ease with which students can “get going quickly on interesting
projects” [11]. We acknowledge that, arguably, these are desirable
attributes for an introductory programming language.

However, it is common for syntactic simplicity to be conflated
with semantic simplicity. Python’s syntax has been developed for
its use as a scripting language, and therefore, by design, it is syntac-
tically simple, while semantically complex. We explore this distinc-
tion further in Section 3. The suitability of introducing students to
programming with a scripting language is strongly dependent on
the learning objectives of the course of study. If the goal is to provide
students with a medium in which to develop techniques that allow
them to solve simple, immediate problems [3], then Python and
similar languages are appropriate: a deep understanding of the se-
mantics of the language is less important. However, if the objective
is to provide a firm basis for in-depth study into the fundamentals
of program design, architecture, performance, and accuracy, as is
the case for computing science degrees, then we argue that Python
alone is not a suitable introductory language.

Literature that discusses the long-term impact of selecting Python
as an introductory language is limited. Oldham [11] reflects upon
the adoption of Python in a CS1 course. While confirming that
Python was a good choice as an introductory language, the au-
thor identifies a number of issues that have arisen as a result. At a
high-level, it is noted that “there is more to Python than we care to
teach”. However, the author identifies more salient issues, includ-
ing Python’s use of dynamic typing, and a number of “concepts
and constructs” quirks. In summary, the author states that having
taught Python in CS1, students are left requiring a better under-
standing of compilation, pointers, and parameter passing, noting
that these issues are addressed by follow-up teaching in C. This
supports our hypothesis that teaching Python alone is insufficient
to meet introductory programming teaching objectives.

Finally, we set introductory programming teaching within the
context of notional machines [2, 10]. We argue that Python’s syn-
tax makes it difficult for a notional machine to be constructed by
implication, and that one must be explicitly taught. We posit that
teaching Python alongside visual languages that share its notional
machine allows students to form more robust mental models.

3 SYNTACTIC VS. SEMANTIC SIMPLICITY
Python contains many rich features with complex semantics, but
the semantic complexity is often masked by simple syntax. This
approach is convenient for advanced programmers who understand
the semantics, but it confuses beginners.

In the sections that follow,we describe the overloading of Python’s
+ and += operators. There aremany other examples, such as Python’s

control flow statements that are not covered here, owing to space
constraints.

3.1 The + operator
Python simplifies the syntax through extensive use of overloading:
using the same operator for several different operations. The par-
ticular meaning of the operator is determined by the types of the
operands. Like many languages, Python overloads the + operator
to mean addition of integers and also addition of floating point
numbers. This is usually benign, but Python goes much farther,
using + also to indicate appending lists and concatenating strings:
2 + 3 = 5
[5,9] + [7,3] = [5,9,7,3]
"abc" + "def" = "abcdef"

This simplifies the syntax slightly by reducing the number of
operators, but it complicates the semantics. The programmer still
needs to be aware of all the underlying operations, and needs to
know in addition how to determine the operation from the type.

A particular problem arises when overloading hints at incorrect
algebraic properties. The algebraic properties of + over integers
and floating point numbers are similar, though not identical, but
Python’s heavy overloading can be misleading. The associative law
holds for +:
(a+b) + c = a + (b+c)
([2,3] + [9,8]) + [6,7] = [2,3] + ([9,8] + [6,7])
("abc" + "def") + "ghi" = "abc" + ("def" + "ghi")

The commutative law holds for integers but fails for lists and
strings:
[6,7] + [4,5] , [4,5] + [6,7]
"abc" + "def" , "def" + "abc"

Python goes even farther, allowingmultiplication of lists and strings.
Multiplication is treated as repeated addition:
3 * 4 = 12
3 * [7,5] = [7,5,7,5,7,5]
3 * "qwe" = "qweqweqwe"

The distributive law states an algebraic property of multiplication
combined with with addition:

x × (a + b) = x × a + x × b

The distributive law holds in Python for numbers
a = 3
b = 4
c = 5
a * (b + c) = 27
a * b + a * c = 27

But it fails for lists and strings:
a = 3
b = [4,5]
c = [6,7]
a * (b + c) = [4,5,6,7,5,4,5,6,7,4,5,6,7]
a * b + a * c = [4,5,4,5,4,5,6,7,6,7,6,7]

3 * ("b" + "c") = "bcbcbc"
3 * "b" + 3 * "c" = "bbccc"

These are not trivial issues. The whole point of overloading
is to use the same syntax for analogous situations, inviting the
programmer to apply intuitions from one type to operations over
other types. Traversing and copying a list, terminating the list with
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a pointer to a different list, is fundamentally different from adding
two integers; yet Python uses the + operator for both.

3.2 The += operator
A common idiom in programming is to increment a variable (i = i +
1) or to add one variable to another (a = a + b). Python (as well as
many other languages) provides the += operator that simplifies the
syntax (a += b).

What does a += b mean? It is commonly stated that a += b means
a = a + b. (Students often look to Stack Overflow to answer their
questions, and many postings on Stack Overflow claim that a +=
b means a = a + b.) If this were true, it would mean that you can
replace a = a + b by a += b, or vice versa, without changing the
meaning of a program. But, in Python, a += b does not mean the
same as a = a + b.
a = [1,2]
b = a
a = a + [3,4]
print a ⇒ [1,2,3,4]
print b ⇒ [1,2]

a = [1,2]
b = a
a += [3,4]
print a ⇒ [1,2,3,4]
print b ⇒ [1,2,3,4]

This issue is particularly confusing for beginners because the value
of a is the same after either a = a + [3,4] or a += [3,4],
but the latter performs a side effect that can change another variable.
In the first example above, the variable b is pointing to the list
[1,2], and the statement a = a + [3,4] calculates a new
list and makes a point to the result. Thus a is now pointing to a
different memory location, but b still points to the original location.
In the second example, the list that a points to is modified in place,
and both variables a and b point to the same node they did before.

In order to understand what the += operator means, it is nec-
essary to understand the data representations of lists, as well as
the concepts of sharing, copying, and mutability. Yet students will
encounter the += operator before they hear of or understand these
relatively advanced topics.

4 PYTHON STUDENT SURVEY
As described in the previous section, many years of teaching Python
to a large cohort of first year university students have enabled us
to identify common misconceptions. In order to build evidence that
our anecdotal findings are more widespread, we carried out a survey
in Spring 2018. This survey was designed to test the robustness of
the mental models of students that had been taught Python. This
initial survey focused heavily on the Python language, rather than
on more abstract concepts, such as overloading.

Based on the results of this initial survey, we refined our hy-
potheses, and shifted our focus from obscure parts of the Python
language. We developed a new survey, which we carried out in
Spring 2019; it is the findings from that survey that we discuss here.
The focus of the questions was on material that had been covered in
the Python course that students had taken. Each question posed a
Python code fragment, and asked what output would be produced,
or what the final values of variables would be. In addition, each

question asked for the respondent’s degree of confidence in their
answer, and for any comments or observations that they had.

The survey attracted 42 responses, largely from students par-
ticipating in a first year Python programming course. Broadly, we
found that the confidence of respondents matched their correct-
ness: where students were less confident, they were less likely to be
correct. This is a promising result: it can be dangerous for program
quality if a programmer is confident in their incorrect knowledge.

In this paper, we limit our discussion of the survey to those
misconceptions identified in the previous section. We provide the
full survey and anonymised results at http://dx.doi.org/10.5525/gla.
researchdata.917.

We asked participants about three different list manipulation
operations, where a and b are lists:

(i) a = a + b
(ii) a.append(b)
(iii) a += b

The survey was completed by 42 students. Of these, 17 (40%)
answered (i) correctly; 4 (10%) answered (ii) correctly; and 17 (40%)
answered (iii) correctly. Overall, performance was poor: none of
the three questions was answered correctly by more than 40% of
students. Further, only one student (2%) answered all three of the
questions correctly. These results are surprising: lists are an im-
portant data structure in Python, and the ways in which they are
manipulated are covered at length in our first year teaching.

We make two other interesting observations. First, we consider
the results for questions (i) and (iii). While these operations are
covered in the first year course, they are difficult to teach, given
the issues described in the previous section. As a result, teaching
favours the .append() idiom, and so we believe that students
are intuiting the results of the + and += operators. On the face of
it, reusing mathematical operators that have clear, well-understood
semantics, and applying them to lists, may appear to be successful.
However, only 4 respondents correctly answer both (i) and (iii). This
is likely because students believe that these statements are equiva-
lent, when, in reality, they have different semantics. As discussed
in the previous section, this is likely perpetuated by Python’s over-
loading of the + and += operators: for other types, such as integers,
these statements would be equivalent.

Second, we consider the result for question (ii). This result is
surprising because, in our teaching, .append() is the preferred
idiom for adding to a list. We identify two reasons for why students
answer this question incorrectly. First, .append() is a method on
a list object: our first year Python course does not cover the object-
oriented programming paradigm, and so students are unlikely to
have a robust mental model of its use. Second, we find that most
students are incorrect because they do not understand Python’s use
of references. In the code snippet provided to students, we update
the list b before asking for the final result. Most students do not
understand that this also updates the list a. The use of references
is a threshold concept [9]: our results support this.

5 AUGMENTING PYTHON TEACHINGWITH
VISUAL LANGUAGES

In the previous section, we highlighted that misconceptions about
Python are widespread. These misconceptions can be attributed
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Figure 1: Illustrating Python’s .append()method

to Python’s scripting language syntax, where overloading is used
to hide semantic complexity. This makes Python a poor choice as
an introductory programming language, unless its teaching is aug-
mented with other languages that make the same notional machine
explicit, and allow students to build robust mental models.

In this section, we describe one such complementary languages:
a visual language, that combines Python’s syntax with block and
flow diagrams that make the manipulation of data structures and
control flow explicit. Importantly, both languages – Python and the
visual language – share a notional machine.

In addition, we provide preliminary observations from a survey
that evaluates the technique we describe. This survey was made
available to the same cohort of students as described previously.
However, 15 students responded to this survey, which is lower than
the 42 that undertook the first. Both surveys were anonymised,
preventing conclusions about progression between the surveys.

Figure 1 gives an example of how this language can be used to de-
scribe Python’s (.append() operation, as discussed in Section 4).
Python statements are shown on the left side, with a pictorial repre-
sentation given on the right. In this way, the visual language creates
an explicit notional machine for Python, showing how each list is
manipulated by a given statement. In this example, two threshold
concepts – references and objects – are exposed, where they would
otherwise be hidden by Python’s syntax.

The purpose of the visual language is to make data structure
manipulation and program control flow explicit in away that cannot
be achieved solely through textual languages. This is particularly
important for those students that have not programmed before,
and for whom sequential execution, branching, and data structure
manipulation may be challenging concepts.

Our preliminary results are promising. Looking at the question
from our first Python-based survey that was least well answered
– the use of .append(), discussed in Section 4 – we find that 10
(out of 15) respondents (67%) correctly answer the question when
posed using the visual language, an increase from the 4 (out of 42)
respondents (10%) who correctly identified the semantics of the
Python statement alone. Similarly, for other questions posed using
the visual language, we see an improvement in correctness.

6 CONCLUSIONS
The choice of programming language is central to meeting the ob-
jectives of an introductory programming language. The choice of
programming paradigm is fundamental: whether to use a proce-
dural, object oriented, function, or scripting language. Scripting
languages – including Python – aim to make programming fast
and convenient. These are desirable features for advanced users,
but they introduce complex statements and data structures that are
prone to misunderstanding by beginners.

In this paper, we have demonstrated that many students lack a
clear understanding of many of Python’s core language constructs.
We hypothesise that while teaching Python alone is insufficient,
teaching it alongside visual languages that share a common notional
machine improves students’ understanding. We described one such
complementary language – a visual language using flow diagrams
– and described preliminary observations that show promise for
our approach. Other complementary languages (e.g., a low-level,
goto-based language) may also be beneficial; we omit further
discussion of this approach, owing to space constraints.

Teaching additional languages is likely to require additional
teaching hours. However, this approach satisfies the conflicting
goals of introductory programming courses: students learn an easy-
to-use, industrially-relevant language in Python, whilst also gaining
a deeper understanding of its semantics through a low-level lan-
guage. This allows students to develop robust mental models that
support further study beyond their introductory course.
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